
Page 1

Documentation

of

Version 1.1b

Oktober 19, 1998

Sunrise for MSX

Page 2

License Agreement

Warranty Notice
Sunrise for MSX makes no warranty of any kind. In no event shall Sunrise for MSX be liable
for any errors contained herein or for consequential damages with the use of WiOS or the
documentation.

The information given in this document is subject to change without notice.

Copyright Notice
This document contains information which is only available for Alpha-Testers chosen by
Sunrise for MSX. No part of this Alpha-Release (that includes WiOS, the Application Creation
Toolkit incl. MAKDRV.COM and this document) may be copied, reproduced or translated
without the written prior of Sunrise for MSX.

Any violation against the copyright results in exclusion from updates and information!

Author Credits

WiOS and this documentation was written by
Michael Stellmann

Other Credits

Thanks to Erik Maas and Henrik Gilvad who provided assistance in answering questions
about the MSX-interrupt handler.
Also thanks to Peter Burkhard for mental support.
Marcel Trütsch for printing.

Anyone else who gave assistance and waited that long for this version.

Trademarks

Any products mentioned in this documentation are trademarks, registered trademarks,
service marks, or registered service marks of their respective companies or organizations.

Agreement

With the use of this documentation, WiOS or any WiOS-related utility from the Application
Creation Toolkit you agree to these conditions mentioned above.

Copyright © 1996-1997 Sunrise Swiss, 1998 Sunrise for MSX

 - Application Programming Documentation

Page 1

Table Of Contents

1 INTRODUCTION TO WIOS .. 3

1.1 ABOUT THIS MANUAL ... 3
1.2 ABOUT THIS VERSION.. 3

2 INSTALLATION.. 4

2.1 REQUIRED EQUIPMENT .. 4
2.2 PACKING LIST .. 4
2.3 INSTALLATION INSTRUCTIONS.. 4

2.3.1 ASCII-C installation .. 4
2.3.2 WiOS installation .. 4

3 PROGRAMMING.. 5

3.1 INTRODUCTION .. 5
3.2 PROGRAM STRUCTURE .. 6
3.3 MULTITASKING .. 7

3.3.1 Pre-emptive Multitasking ... 7
3.3.2 Co-operative Multitasking .. 7
3.3.3 Polling and Problems ... 8

3.4 MEMORY STRUCTURE ... 9
3.4.1 Internal WiOS-part.. 9
3.4.2 Code- and Stack-Segment.. 9
3.4.3 Data-Segment ... 9
3.4.4 Global Data Area (‘GDA’) .. 9

3.5 DRIVERS .. 10
3.6 HANDLES ... 11
3.7 WINDOW INTERFACE ... 12

3.7.1 Icons ... 12
3.7.2 Parameters .. 12
3.7.3 Window Management .. 13
3.7.4 Window Types .. 13

3.8 EVENTS - COMMUNICATION BETWEEN WIOS AND TASKS ... 14
3.9 USER INPUT ... 16

3.9.1 Mouse Triggers ... 16
3.9.2 Key Presses .. 16

3.10 DRAG & DROP... 18
3.10.1 How to simulate non-existing parts in the Alpha-Release 18
3.10.2 File Management .. 18

3.11 PROGRAMMING LANGUAGE ... 19
3.12 C SPECIFICATION.. 20

3.12.1 How to come from the C source to an executable COM-file 20
3.12.2 The limits of C ... 21
3.12.3 Breaking the limits of C.. 21

3.13 BASICS... 23
3.13.1 Accessing the Global Data Area .. 23
3.13.2 Compatibility .. 23
3.13.3 Calling WiOS-Functions .. 24
3.13.4 Return Values ... 25
3.13.5 Definitions .. 25

3.14 FUNCTION REFERENCE (WIOS DRIVERS) .. 26
3.14.1 External Driver .. 27
3.14.2 File-System Driver .. 28
3.14.3 Graphic I/O Driver .. 31
3.14.4 Graphic Driver ... 32
3.14.5 Memory Driver .. 35
3.14.6 Standard Driver... 37
3.14.7 Task Driver .. 38
3.14.8 Window Driver... 39

3.14.8.1 The Window Structure ...40
3.14.8.2 Window Driver Functions ..42

 - Application Programming Documentation

Page 2

3.14.9 Direct Calls .. 45
3.15 EVENT REFERENCE.. 46

3.15.1 Event Block Structure .. 46
3.15.2 Event Definition... 46

3.16 DATA EXCHANGE SPECIFICATION .. 49
3.16.1 Execution of a data exchange .. 49
3.16.2 Data Type Definition... 50

3.16.2.1 Data sent with the ‘E_EDRAG’ event ..50
3.16.2.2 Data sent with the ‘E_USERMSG’ event ..51

3.17 GDA REFERENCE .. 52
3.18 MENU REFERENCE... 54

3.18.1 Menu types .. 54
3.18.2 Menu Features .. 55
3.18.3 General conventions about menus .. 56
3.18.4 Menu-Block Structure .. 57

3.19 PROGRAMMING TIPS .. 60
3.19.1 Windows .. 61

3.19.1.1 Opening Windows ..61
3.19.1.2 Redrawing Windows ..62
3.19.1.3 Scroll Requests ..62

3.19.2 User Input .. 63
3.19.3 Using the Temporary Segment... 63
3.19.4 Mouse Pointer ... 63
3.19.5 Sending data to other program parts using the address block 64
3.19.6 Stacks .. 64
3.19.7 Program Termination ... 64

3.20 COMPILATION .. 65
3.20.1 Single Part Applications (up to 16k code) ... 66
3.20.2 Multi Part Applications (more than 16k of code) .. 67

3.21 TASK SPECIFICATIONS.. 68
3.21.1 Headers ... 68
3.21.2 Standard Header Structure ... 69
3.21.3 Extended Header Structure .. 69

3.22 SAMPLE PROGRAMS... 70
3.22.1 Pre-processor Directives ... 70
3.22.2 Header Files .. 70
3.22.3 External Variables .. 71
3.22.4 Task Initialization .. 71
3.22.5 Main Routine ... 71
3.22.6 Window Creation .. 72
3.22.7 Polling and Event Handling ... 73

3.23 SECURITY .. 76
3.24 STARTING TASKS WITH THE ALPHA-RELEASE.. 76
3.25 PROBLEMS, BUGS AND OTHER UNWELCOME STUFF.. 77

3.25.1 Known Problems... 77
3.25.2 Planned Extensions ... 77

4 FAQ - FREQUENTLY ASKED QUESTIONS... 78

5 KEYWORD DESCRIPTION .. 79

6 LAST BUT NOT LEAST ... 80

 - Application Programming Documentation

Page 3

Introduction to WiOS
WiOS is a graphic-based, multitasking operating system for the MSX and the V9990 video-
chip, which is on the Graphics 9000 and the Yamaha E-VDP III Evaluation Board.

WiOS is a collection of routines that support the programming of applications in a graphical
environment. Currently, WiOS allows a shared number of up to 252 drivers or tasks (which is
a synonym for ‘application’), the management of 3072 memory-segments and 256 windows.

1.1 About This Manual
This Manual is divided into 5 main chapters. Although my intention was to write a perfect
documentation, with which every programmer should come from the understanding of why
several parts of WiOS are as they are to the creation of a good application with this
documentation as a valuable reference book, I’m almost sure that there are sections which
you will not understand, not enough details in the description of complex structures and
maybe even gaps in essential parts. Due to a lack of time (well, actually my meaning of life is
not WiOS, although one could believe that, regarding the time and the effort WiOS took and
will still take) and users (the next MSX user lives about 400 km away), this documentation
has neither been read nor was it ever used for programming. If there are parts you don’t
understand or even missing, please inform us. We can only help you if we know what you
need. Don’t hesitate to write constructive criticism.

1.2 About This Version
This Alpha-Release is not bug-free. It is not optimized for speed and it is not tested with other
computers, other hardware, resistant programs and it has not been tested with any
application doing more than just using a few of the functions - just to test them. Each function
has been checked carefully in single-steps, but not in co-operation in a bigger task.
The only purpose of this version is to speed up the debugging. Only Alpha-Testers chosen by
Sunrise for MSX are given this version under the condition of helping to find and reporting
bugs.
This is NO public version and, on the contrary of the Beta-Version, NOT free.

 - Application Programming Documentation

Page 4

2 Installation

2.1 Required Equipment
As a minimum you must have the following hardware and software to run this WiOS Alpha-
Release.

Hardware An MSX turbo R is strongly recommended for getting an acceptable speed.
A mouse is needed to be able to move the cursor.

Display A V9990-based graphic card at port 60h.

Memory At least 160k of free memory.
To make bigger applications and use memory for temporary data storage, memory mappers
should be added. About 300k of free memory is good.

Disk For good programming, a harddisk is required.

Operating System MSX-DOS 2 or higher.

Language ASCII-C v1.2 is advisable, due to the fact that the function calls must have
the same structure.

2.2 Packing List
See the READ.ME file on the Application Creation Toolkit for complete packing list

2.3 Installation Instructions

2.3.1 ASCII-C installation
There is no need to have ASCII-C in the same directory than WiOS.
To find the compiler files, you may either specify the directory in the PATH environment
variable or put the complete drive and path before the COM-files in the compilation batch file.
To find the standard C libraries outside of the current directory, include them with
#include <headfile.h>
and set up the INCLUDE environment variable with the drive and directory of the header files.

2.3.2 WiOS installation
Make a directory of your choice on a drive on your harddisk and copy all the files from the
directory WiOS on the disk to the harddisk.

 - Application Programming Documentation

Page 5

3 Programming

3.1 Introduction
If you have never worked with WiOS (and you sure did never work with WiOS ;) it’s important
to read this section completely to better understand the basic structure of how WiOS works.
This is not a detailed information of how anything is done internally, but a raw outline of what
you need to know before you are going to make programs for WiOS.

The introduction contains the following parts:
Structure

Basic differences
Multitasking

Pre-emptive Multitasking
Co-operative Multitasking
Polling and Problems

Memory Structure
Internal WiOS memory
Task-segment
Data-segment
Global Data Area

Drivers
Difference: Task <-> Driver

Handles
Programs
Graphic

Window Interface
Icons
Parameters
Window Management
Window Types

Events
Communication between WiOS and Tasks

User Input
Mouse
Keyboard

Drag & Drop
How to simulate non-existing parts in the Alpha-Release

Programming Language
C!
C?
C!!!

C specification
How do I come from the C source to an executable COM-file
Limits of C
Breaking the limits of C

 - Application Programming Documentation

Page 6

3.2 Program Structure
Programming applications for WiOS is different from the way you are used to structure
programs. The main difference - and that is why the structure is different - is the fact that a
program is not any more the one and only thing the computer has to process - you are now in
a multitasking system.

Single tasks normally work like this:

function1
calculate_something program is busy for a while
wait_for_user_input user-input function is repeatedly called until a certain key

is pressed or the mouse was clicked or time elapsed or...
calculate_something_else let the user wait until this is done
wait_for_next_user_input

call_another_function or
loop_something

exit well, finally return to DOS

Most programmers should be familiar with this linear structure.

Also with the process of what is happening when subroutines are called:
The return-address is saved on the stack, and is restored when the subroutine returns. If
other subroutines are called from subroutines, the stack will be filled with the return-
addresses and restored in the reversal order as they are stacked - i.e. the last address will be
restored first.

To execute a second program parallel to ‘function1’ is a bit difficult. One way might be to
prepare a special subroutine (‘function2’) which is some kind of loop that has a counter-
variable and returns every time it is called for the next loop. To achieve that, we would have
to call this subroutine in many places in our program.

This loop-routine must be called from ‘calculate_something’, ‘wait_for_user_input’,
‘calculate_something_else’, ‘wait_for_next_user_input’ and ‘call_another_function’. Then we
have one ‘active’ function that calls a calculation-routine permanently - it seems as if the
second task would be executed at the same time as the other function.

Our sample is not very effective, since the second task can be only one fixed function which
has to be prepared for this special type of ‘loop’ (check counter, loop once and return). Also
we cannot run a third task. There would have to be a table which indicates the number of
tasks to call from ‘function1’. But, what if we stop and remove ‘function1’ from memory? We
would have to call the other tasks from ‘function2’. Since it is only a special loop-routine, it is
almost impossible.

 - Application Programming Documentation

Page 7

3.3 Multitasking
Now we are going to examine what types of multitasking exists.

3.3.1 Pre-emptive Multitasking
Every application gets a certain amount of time. The control is given and taken from the
system. One major problem is to preserve the status of what an application did when the
control was taken. A simple demonstration: One task prints a text at the upper left, a second
task at the lower right corner. The first task sets the text-pointer to its corner and starts
printing. Now the system interrupts task 1 before is could print anything and task 2 starts. It
sets the text-pointer to the lower right and starts printing. Again, the system interrupts and
task 1 continues. Since task 1 has been interrupted, it could not be informed of the fact that
task 2 was called. So it continues with the text-output. Since the text-pointer is still at the
lower right corner, task 1 is unable to finish its text-output on the correct corner, and, even
worse, corrupts the output of task 2.

Consequently actions must be done to either let the system preserve the text-pointer, or to let
the task check a status-flag before every character output if it has been interrupted, and if
yes, set the text-pointer to the new direction. That requires a text-pointer-counter for the task
or a table of global variables for each task where the system can save the text-pointers.
Since text-pointers are not the only thing one task might corrupt the actions of another task,
you need huge tables for storing and restoring global settings, or you slow down the
execution time of your task drastically with counters and flag-checking. Also, it’s not easy to
send a message to a task like ‘user has moved your window, redraw!!!’, or ‘here comes a
picture of another task’. So more status-flags must be used and checked. In every case, pre-
emptive multitasking needs a very powerful processor and is very memory-consuming - and
very hard to program.

3.3.2 Co-operative Multitasking
With this type, the speed of the system depends on the co-operation of the tasks. Every task
has the total control of the execution time. The way co-operative multitasking works is a little
bit of what we have done in the upper example, and a bit of something completely different.
To offer the possibility of other tasks being able to do something in ‘parallel’, each task must
leave the control somewhere in the program. This is the ‘calling’ of ‘function2’ in the example,
with the difference that it’s not ‘function2’ which is called but a routine whose position is fixed
and independent of which tasks are running. This function is not a real ‘subroutine’, although,
from the task’s point of view, is does look like if it would be, because the task calls it and
expects the function to return like from a normal subroutine. This unique function is called the
‘Poll-Routine’, and the process of calling it is called ‘Polling’. The objective of the poll-routine
is to ‘return’ to other tasks that have polled - one after each other.

WiOS uses co-operative multitasking - although it has to deal with similar problems like pre-
emptive multitasking, it’s easier, faster and more memory-preserving.

One major advantage is, referring to the example with the text-pointers, that the task can
complete its output without being interrupted and without corrupting other tasks, because you
are free to set the position of the poll-routine. If one routine runs two minutes without polling,
the system will be ‘blocked’ for two minutes - that’s co-operation!!! For a task, the ‘returning’
from poll-routine seems as if it was only a call to a subroutine.

For better understanding, let’s focus on what the poll-routine does:
Since it is ‘called’, it must preserve the return-address for the task that polled. It has to check
a list where all running tasks are registered and see which one is next in the list. This task’s
return-address is restored - the poll-routine does not return to it’s caller, but to the position of
where the next task has formerly called it. That allows to process complex programs parallel,
not only special prepared subroutines, as ‘function2’, because polling can be done from every
point. So every running task ‘called’ the poll-function and is waiting for ‘return’, except the one
task which is running - the ‘active’ task.

 - Application Programming Documentation

Page 8

3.3.3 Polling and Problems
That causes another problem. Since the polling can be done from every point, it can also be
done in s sub-routine, in a sub-sub-routine, or even more interlocked. If one stack is shared
among all the tasks, it would happen that if the active task returns from a subroutine, it
returns to the caller of the previous task. So a stack for each task is needed. And there we
are at the next point.

 - Application Programming Documentation

Page 9

3.4 Memory Structure
To achieve several programs running at the same time, more than 64k memory must be
accessible. Also, there must be a fixed area which is always present to guarantee that some
functions, like the polling, may be called from everywhere. WiOS uses the following memory
configuration:

memory page address-space description
Page 0 0000-3FFF internal WiOS-part
Page 1 4000-7FFF code- and stack-segment for tasks & drivers
Page 2 8000-BFFF data-segment for tasks & drivers
Page 3 C000-FFFF global data area and pointer

3.4.1 Internal WiOS-part
Here are the functions that must be accessible from any point and that processes switches in
the code- and data-segment. The addresses of functions and variables may vary with
different WiOS-versions.

3.4.2 Code- and Stack-Segment
Every task has 16k for code. To make things faster, the stack-pointer is also kept in this
segment. So whenever the poll-routine has to switch to another segment to return to the next
task, the task’s stack is already there - only the stack-position must be corrected.

3.4.3 Data-Segment
This is where the task can switch memory segments freely for storing data permanently or
temporarily. There might even be program-code, but this has NOT been tested yet - in every
case, the stack resides in page 1, and if a function in page 2 switches the segment of page 1,
unpredictable behavior of the system will be the result.

3.4.4 Global Data Area (‘GDA’)
Here’s the interrupt-handler and the fixed table of entry-points. Whenever WiOS’ internal part
is changed, the correct addresses are filled in the GDA at start-time. This indirect addressing
allows other programs to access functions even if their position change. The list of pointers
may be expanded in future, but NEVER may existing entries be changed. WiOS also uses
this area for its own internal stack to be able to switch page 1.

 - Application Programming Documentation

Page 10

3.5 Drivers
The total amount of 16k in page 0 is far too less for WiOS itself, and even if it would be
enough for this time, it would run out in the future. Therefore only the necessary parts are
placed in page 0 like the poll-routine, global variables, memory- and task-management. To
offer more than this - WiOS was developed to make graphical applications easier, and yet we
have seen nothing of this possibility - modules are used. Each module has to be seen as a
‘container’ with many functions in it. It is not required that these functions are accessed
directly. For many functions, it’s sufficient passing the parameters in a list and let this list be
moved to the function. We differ between internal and external functions. Internal functions
are accessed directly, external functions are accessed indirectly - via internal functions.
These external functions also need to be mapped somewhere, and this is exactly the same
area where the tasks reside: page 1. This has as a consequence that WiOS does a lot of
segment-switching. But, in return, this enables the possibility of an almost unlimited number
of external functions. These containers are called ‘drivers’.

Difference of Tasks and Drivers
Drivers have two main differences to tasks. They
� may not poll, so the routines in tasks block any other activity as long as they are executed
� cannot be present on the screen with windows (which arises from the fact that they may

not poll)

But: drivers may call other drivers (like subroutines)
To prevent exaggeration of indirect addressing, external functions are called using numbers,
which have to be defined in the driver itself. Therefore every driver has one fixed entry point
(per driver) to where the internal ‘function-caller’ sends the arguments from the task or driver.
Since every driver may use the same function-numbers as other drivers - the function
numbering normally starts with zero - they are separated by handles.

 - Application Programming Documentation

Page 11

3.6 Handles
The memory-manager of WiOS needs to save the ‘user’ of a segment for preventing tasks
(when speaking of ‘tasks’ in this paragraph, both, tasks and drivers are meant) of freeing
segments of other tasks. To ensure this, every task must have its own ID-code. This ID is
called ‘handle’ - like file-handles in DOS 2. Whenever a task is loaded, WiOS searches for
the next free handle and applies it to the task.

Task handles are searched from start to the end, driver handles vice versa. The maximum
number of handles is 252 - and the total amount of possible tasks and drivers depends on
how many tasks or drivers are already installed.

As we have seen, the handle of a task or especially driver may vary. How does a task know
which handle a certain driver has? WiOS has some standard-drivers, which are needed in
every case. Their handles are stored in the GDA.
What if a new driver will become a ‘standard’ also, for example a printer driver?
Every task and driver has its own identification, independent to the handle assigned by
WiOS. This identification is a null-terminated string, which length and content may be chosen
freely by the programmer. A task’s or driver’s handle can be searched by its name. If you are
searching for a driver which has no entry in the GDA, just search for its name, and WiOS will
return either the handle or an error-code so you can reload the driver if necessary at your
task’s initialization routine. The handle can then be stored in a variable and the new driver
can be accessed like all the other ones.

Also windows, standard-icons and fonts are accessed by these handles - the last two work in
the same way as described above: You have to search icons and fonts by name once and
receive the handle.
See: Init-Routine

 - Application Programming Documentation

Page 12

3.7 Window Interface

3.7.1 Icons
Windows are almost completely controlled by WiOS. That means you do not have to care
about user-activities outside the work-area. Please take a look at this little illustration to make
yourself familiar with the designations.

The icons around the window are called window-icons. There are 7 ‘icons’ (some are more
than icons) and each can be set separately for every window using the ‘icon-flags’:

- Back-Icon
- Close-Icon
- Title-Bar
- Toggle-Size-Icon
- Vertical Scrollbar
- Resize-Icon
- Horizontal Scrollbar

3.7.2 Parameters
To create a window, you have to set up a parameter-heap with the icon flags as well as the
following:
- absolute coordinate of upper-left corner on the screen
- size of the visible work-area (from now on called ‘work-area’ size)
- size of the total work-area (‘virtual’ size)
- scroll offsets
- minimum size of work-area (i.e. how small the window can be made by the user)
- maximum size of work-area (...how big...)
- window-area-flags
- icon-flags
- work-area-flags

That is not all you can set, but almost.

Horizontal Slider
Right arrow
Resize-Icon
Down arrow

Vertical Scrollbar

Vertical Slider

Up arrow

Toggle-Size-
Title-Bar

Back-Icon

Left arrow

Horizontal Scrollbar

Close-Icon

Visible Work-Area

 - Application Programming Documentation

Page 13

What is the work-area?
It is the place where the task can show its own information, graphics, whatever. But a more
interesting fact is that the size of the area given as the work-area size is never changed by
WiOS due to window-icons. If your window’s work-area is 100x100 pixels and you add a title-
bar, then it will not take space from your work-area but enlarge the total height of the window
by the height of the title-bar. There are also some priorities with the flags, so some icons are
‘shrinked’ if there’s not enough place around the window. So the best thing is you just try all
of the 2^7=128 combinations of the window-flags and see by yourself.

By the way: WiOS does no checking if the icons fit around the window - if your window is too
small, some icons will overhang others. Also WiOS does not allow the user to drag or resize
windows totally or even partially out of the screen. It’s up to you to set the minimum and
maximum window-size in a way that this does not happen. There’s a definition for sizes, so
you don’t have to try that out (we’re still in the introduction, and I won’t become too specific
here).

Referring to what was said at the beginning, WiOS does the complete checking and handling
of the window-icons. Nevertheless does the task still have the full control on whether to
accept what the user has done, to make changes, or to reject it completely. WiOS sends the
parameter heap to the task BEFORE doing any actions on the screen - it’s up to the task to
give the command to redraw the new window.

3.7.3 Window Management
WiOS only holds a parameter-list for each window in memory. Their identification is similar to
the tasks and drivers, but they have only handles, no names. In contrary to conventional
graphical-user-shells, windows contents - and the contents of the windows below - are not
stored as bitmap-graphics, but only as coordinates on the screen. Due to the fact that all
windows have one thing in common - they are rectangular - it is possible to calculate which
parts are visible on the screen. Since many parts of a window can be hidden by upper
windows, it is not easy to draw only the visible parts. WiOS offers two theoretically ways,
whereas only one has been tested completely. When WiOS sends the list of rectangular
fragments on the screen, you can either redraw
� only the necessary parts (this method is not tested since it’s very tricky and might be even

slower yet than the other).
� the full window at coordinates WiOS offers you (on a hidden page) and let WiOS copy the

necessary parts of this window to the screen.

As long as it is only possible to auto-cut graphic commands to a rectangular area - not to a
polygon - the first method is not advisable - although there are cases where the redraw of a
full window takes much more time than the redraw of small parts. But that’s part of an
optimization of the window-driver and - as said before - WiOS is only ‘optimized’ for
functionality, neither for speed nor for efficiency.

3.7.4 Window Types
Parent Windows
are conventional windows. If only single window is opened by a task, this window has the
status ‘parent’.

Pane Windows
are windows that are connected to a ‘parent window’. They are always directly over their
parent. If the parent is moved to the back, all its pane windows will go back as well. Also if
the parent is put on front. They will be closed automatically if the parent is closed and - that’s
different from parent-windows - without the task being informed. It only gets to know if the
parent window shall be closed.

Now, after having told you so much about WiOS sends information to the task, it’s the best
time to start talking about the interaction of both.

 - Application Programming Documentation

Page 14

3.8 Events - Communication between WiOS and Tasks
Imagine the following situation: The task does a very complex calculation that lasts some
minutes. Of course (it is co-operative!) it polls every 10th loop. Now the user closes a window
which is in front of the calculating task’s window. Although the task would be busy for some
minutes, it should be able redraw its window on demand.

To permit WiOS to ‘talk’ to tasks, they must have an ‘Event-Handler’. There’s no better place
to let WiOS send information to the task than after the polling. A number which is called the
‘Event’ is returned to the task. It has do deal with it, so every task must call its own event-
handler and take action on the event before continuing with its calculation.

To guarantee an immediate screen update after a window-move-operation by the user, the
events have a different priority. That means task which has to redraw a window should be
called before he would have the turn in the normal poll sequence and before other tasks that
are ‘just’ waiting for being returned to without the need to redraw.

This requires a differentiation between tasks that must be called to update the screen and
tasks that are just doing some calculations where it does not matter if they continue one or
two seconds later than usually.

It’s not important for programming, but it may be interesting for you to have a better
understanding of what WiOS does, that there are three priorities of events. Here they are
(highest priority first):

- Open
- Redraw
- Scroll
- Close
- User-Message

- Mouseclick
- Pointer has left window
- Pointer enters window
- Pointer is over work-area
- End of a drag-operation
(- planned: keyboard hit)

- Null-Event

The event with the lowest priority is only sent if nothing else is to do. And it’s also the event
that has to do with the wide spread (but wrong) idea of ‘multitasking’. It is sent to tasks (when
speaking of ‘sending’ something to tasks, it is meant that the poll-routine returns this
information to the poller) if nothing else important has to be done and the task can continue
its ‘background’-calculation. One could translate it like ‘now there’s nothing else important to
do, and you may continue with your normal activity’. The word ‘background’ is in quotes
because there are no tasks working either in the background or foreground. Every task is
waiting for the poll-routine to return. The only ‘active’ task is the one which has the turn - and
that may change many times per second. Anyway, it is clear that a redraw-event is more
important than a null-event and must be executed first.

But, on the other hand, every task must be co-operative not to take advantage of being called
(i.e. returned) for a redraw-event to process its calculation after redrawing since that would
cause other tasks waiting for the null-event even wait longer for it. Therefore tasks that
receive a high-priority event should poll again immediately after this event has been handled -
and wait for the null-event to continue with a ‘background’ calculation.

 - Application Programming Documentation

Page 15

Actually, not every task has to do complex calculations all the time. If a task just waits for the
user clicking somewhere in the window or for a keyboard-entry, it is not necessary for him to
be called all the time if nothing happens. Also would calculating tasks take profit of the time
needed for calling tasks with the null-event. The result of this fact is the possibility to mask
events.

The task may mask-out events for not being called all the time. The simplest case is the null-
event. If a task waits for something, it is able to tell the poll-routine ‘activate me only when a
mouseclick is done or a window has to be redrawn, but not for drag-, null- and pointer-over-
window-events’.

That speeds up the processing time because WiOS will not call all tasks if nothing of interest
(for the task) happened.

 - Application Programming Documentation

Page 16

3.9 User Input

3.9.1 Mouse Triggers
Traditionally, programs waiting for mouse-input have to scan the triggers all the time. If the
program pauses for a while, it won’t know if you have pressed and released the triggers in
this pause. The same problem is for the keyboard-entry. But the MSX-system uses a trick to
inform programs if a key was pressed during their ‘absence’. This technique is called
‘buffering’. Whenever you call the BIOS-routine to get the next key, a pointer in a buffer is
incremented and returns the next key in this buffer. The buffering is only possible because
the system scans the keys all the time - no matter if the program also scans the keys or is
busy with something else - and fills the buffer if a key is pressed. To make sure that the
keyboard-scanning is done constantly, the routine which does the check must be hooked in
the interrupt.

[btw: Therefore all the keys pressed during a time when the interrupt is disabled are not put
into the buffer - that’s why most of the keys you press while something is loaded from disk
are not buffered]

In a multitasking environment, it might be possible that your task does not have the turn for a
while and it’s impossible to scan what the user did one second ago. WiOS’ mouse movement
is done in interrupt, so it’s possible to buffer mouseclicks - but only the last click is buffered.
This has several reasons. The most important one is that the user may not click randomly
over the desktop while one task is drawing, one after each other, the following windows:
‘FORMAT - ABCDEFGH’, ‘FORMAT DRIVE A - YES - NO’. If you clicked (unfortunately) at
position ‘A’ in the first window and at ‘YES’ in the second window before they appeared, and
the task takes the data from a multiple-click buffer, your drive A will be emptied. You would
blame WiOS for that behavior and demand me to pay your damages. One buffered click is
warrantable, and if you are still afraid of this, your task may even accept a ‘FORMAT - YES’
only when the mouseclick is done during a direct trigger-scanning.

How does a task know if the trigger is hold or has been released and pressed again since the
last polling?
As there are multiple tasks, WiOS could to update a table for every task which has requested
the mouse-button state. But since that would be too slow, WiOS simply stores a timer in the
buffer when a click is done. The task must use this timer for getting to know is the mouse has
been released and pressed again during polling. If the mouse is still pressed, and the timer in
the buffer is the same as before polling, the mouse has been hold. If the timer is different, the
mouse has been pressed anew. Sure, there’s a theoretical inaccuracy if the mouse is
pressed exactly at the same timer-state as before, but this chance is 65536:1 - if the mouse
is pressed exactly 65536 vsyncs afterwards. To know where the click was, the mouse-
handler also stores the coordinates of the click so the task always knows the position where
the mouse-pointer was when the trigger was clicked, not only where it is now. This assures
all user-activities to be handled exactly, even if the task can first react some seconds later.

3.9.2 Key Presses
A bit more difficult is the buffering of the keyboard-input. If it would be the normal way, one
task that’s waiting for the ‘K’-key always empties the keyboard-buffer as long as you press
‘K’, and another task that waits for the [RETURN]-key does not get any keys. Theoretically,
every task should have its own keyboard-buffer. Of course, that would take too much time
and space, but WiOS does something similar: it uses one buffer with several pointers for
each task. Whenever a task calls the function to kill or to read the keyboard-buffer, only its
pointer is reset or incremented, so one task may just have cleared his keyboard-buffer, while
the next task will get the last 100 key-presses. The buffer is 256 bytes large and is updated at
polling-time and whenever WiOS’ getkey function is called. If a task starts to read the buffer
after about 300 key-presses, if does only receive the last 300-256=44 keys.

 - Application Programming Documentation

Page 17

In every case, there are two things to remember:
� If a task reads the keys directly via the BIOS-getkey call, only this task will get the keys -

they will not be buffered for other tasks. But they should! Especially, when a task wants to
react on ‘hot-keys’.

� If a task waits for a recent key-press, kill the buffer and start waiting for a key in a loop
where the getkey- and poll-routine is called.

 - Application Programming Documentation

Page 18

3.10 Drag & Drop
The multitasking structure of WiOS allows tasks to call routines from other tasks. That does
not only make it unnecessary for programmers to code common routines again and again,
that also saves a lot of memory and that even gives the possibility to use routines from other
programmers, even if you don’t know in which language the routine is written and how much
memory the program uses.

A good example is the disk-menu. There exists only ONE task that makes all file-handling
like deleting, moving, copying and even opening files. This disk-menu is a basic task of
WiOS and delivered as the ‘standard’ application with every WiOS, so nobody has to write its
own disk-menu again.

In fact, one problem is that the disk-menu is not yet written, since your WiOS-version comes
directly from the development (if you put your hand on WiOS, you can feel that it’s still warm
:-)
To be able to write Alpha-Test tasks without the disk-menu, you have to understand how
‘drag & drop’ works.

Normally, all interactions between tasks are done by the events. And if you look back to the
events, you will see that there’s a ‘End-Of-Drag-Operation’ event. With this event, there is
always coming a data-field which identifies the incoming data for the receiving task. The
structure of the data-field is not yet of importance and described later. Now if the user drags
files from the file-manager to a task’s window or to its icon on the toolbar, the task will receive
this event with the ID that there are filenames coming and where they are stored - nothing
else. And that’s exactly the point on how you can write WiOS-tasks without the disk-menu.

3.10.1 How to simulate non-existing parts in the Alpha-Release
You can simulate the file-manager sending files to a task by writing a second task sending an
‘E_EDRAG’ and an ‘E_USERMSG’ event (for both, see chapter 3.16 - Data Exchange
Specification) to your own task with the needed file(s). On first view, this is a stupid way: Why
not opening the file directly? Well, you *can* do this, but if you do it the other way, it’s easier
to adapt your application to the complete public WiOS-version with the file-manager included
- to be more precise, if you do it this way, there is at least no modification needed later!

3.10.2 File Management
It is still one weak point of WiOS that no checking is done if you open one file with multiple
instances of one task or with different tasks, make changes to the file and save it. Although
it’s not yet tested what DOS 2 does, there is no handling in WiOS. Since this is part of the
file-driver, this can be handled correctly or prevented in future versions of it.

Disk-errors are also planned to be handled by WiOS itself, so, for Alpha-Testing, just don’t
produce them >;->

 - Application Programming Documentation

Page 19

3.11 Programming Language
Now comes a tough section for all hard-core assembler guys:
Forget assembler! Here comes C!!!
Note: When speaking of C, only ASCII-C 1.2 is referred to, not BDS, Hi-Tech or any other C
language for MSX!

Why C?
WiOS is not developed for those little tiny baby-application-tsr’s that nobody can use except
for some presentation like ‘Look, I enter basic and the music is still playing in interrupt!’ With
WiOS, it is not only possible, we even we expect programmers to make bigger applications. It
does not have to be a Graphic-Program with a balloon-logo. But WiOS is developed for big
programs, no matter if they need one, two or even three megabytes of memory. That also
means that the program does not only consist of a separate special-adapted-and-hand-
optimized routine that rotates the screen while scrolling a text and flashing the colors until the
next space-key is pressed. Speed does not have the highest priority for applications. Every
program with which the user can do many things need a complex handling-routine - and lots
of time for debugging. And there are many standard-things like loops and calculations that
have to be done ever and ever again. Although it’s not that hard to code this is assembler,
you will come into trouble if you have several loops in each other or if you want to make a
variable step-size. As you all know from basic, this is no problem. But in assembler,
programs tend to get bigger than the screen, then bigger than 10 screens, and at the latest it
will take you a lot of time if the program does not what you want. Then you will spend a lot of
time debugging these standard-routines. And yet, you didn’t even come to the complex stuff -
although applications are full of them. How easy would it be if you could just insert a print
command to get the contents of the variables. This is easy with so-called ‘higher
programming languages’, and most of the programmers just left basic because of its
slowness and lack of commands. Since C offers 100% assembler-routine implementation,
you can make a good mix of speed, efficiency, and at least development time.
C is also recommended due to the way parameters are sent to WiOS. Since C always
creates an assembler listing, it is, of course, possible to write complete WiOS-programs in
assembler, but believe me, without C, WiOS would not have been finished in ten years.

Now take this rigorous advice: Begin to learn C (if you still haven’t) or forget programming
applications for WiOS. This is not only of use for the MSX but also for your future if you are
continuing in the software-market - no matter if you change to the PC, UNIX or whatever.

And even more rigorously: You will interest no employer if you tell him that you write only
Z80-assembly and MSX-Basic fluently!!!

 - Application Programming Documentation

Page 20

3.12 C specification
Congratulations, if you’re still reading, the you are ‘with us’!!!

Next comes a small introduction of how C on the MSX works:

3.12.1 How to come from the C source to an executable COM-file
C consists of two programs for compiling the source-code, one for assembling and one for
linking an executable COM-file.

First of all, the Parser:
The program ‘CF.COM’ takes your C-file and checks all syntax-errors. Its output is a file with
the extension ‘TCO’ - the so-called T-code file. If your program passed the parser, you can
be 99% sure that your program does not contain fatal errors that prevent the compilation of it.
This step is very important because the next step requires this T-code file.

The Code-Generator:
It takes the T-code file and generates pure assembly-code. The result is put into a MAC-file.
It’s plain ASCII-text and this is the point where you can still hand-optimize or use XelaSoft’s
optimizer to optimize the compiled code. For test-runs, it’s sufficient to let the code ‘as is’.

The M80 (macro-)assembler:
The code-generator produces an assemblable (stupid word ;) file for the M80 assembler. If
you take a look at this file using a text-editor, you’ll find some directives that allow the usage
or variables and routines outside of this file - and these non-standard commands are not
supported by other assemblers. M80 creates a REL-file with your code - which means
‘relocatable’. This file contains only relative jumps and calls, and stores labels for ‘external’
functions and variables. This file can NOT be executed. It must be linked first.

The L80 linker:
It takes all the REL-files you have given in the command-line and calculates all absolute
addresses. On this step, you MUST give all the files that contain the functions and variables,
because an executable COM-file is generated. If there are some labels missing, L80 will
inform you of that. The COM-file is always generated, but if there are error messages, you
have a good chance of you program hanging somewhere

Why these many steps?
Due to the limit of 64K on the MSX, the Code-Generator is not able to handle too complex
functions and store that many labels which are needed for writing complex programs.
Normally, if a function exceeds 50 lines of code, the code-generator capitulates. Then the
routine has to be split up into small routines.
Also, the compiler is very slow. If you write bigger programs, it will take minutes to compile
them. Therefore, it is advisable to separate ‘good’ (i.e. working) routines from the code into a
separate file, so it’s no longer necessary to compile them ever and ever again with the non-
working routines.
Now you have seen that, in every case, bigger programs consist of many small source-files.
As soon as REL-files of all parts are produced, you only need to compile the part which
contains bugs and link it with all the other parts again. By the way: Linking REL-files is many
times faster than to concatenate all MAC-files and assemble this big file with another
assembler that produces an executable directly. Also linking is necessary since parts of the C
runtime-library are copied. For example, if your program uses the ‘printf’ command, the
executable is about 1 kilobyte larger than if you don’t use it - only the necessary functions are
linked from the so-called standard-I/O-library (‘STDIO’).

 - Application Programming Documentation

Page 21

3.12.2 The limits of C
C is strictly limited to 16-bit addressing-space - no built-in memory-mapping, no bigger
programs. I actually don’t know WHICH part limits to 64KB, but I know that the last action
preventing programs of getting too large is the linking-process. There exists the L80 version
2, but use version 1 for linking C-programs: your program can be larger than in version 2!
Actually, I don’t know what’s different in the new version, but I could compile anything until
now with the old one. Anyway, the linker also creates a COM-file and expects any program to
start at 100h. If you write an ORG 4000h, you will receive 3F00h bytes with zeroes in your
COM-file.

3.12.3 Breaking the limits of C
Now we have a big problem: I first wrote that it’s no problem writing programs that have
40MB of code-size, and now I tell you that C is limited for 64KB. Well, both is true, but it has
to be done in a non-standard, but easy way. You won’t even notice when your program is
larger than 64KB.

Before continuing with the description on how this works, please remember the code-area of
your program: it if fixed to 16k for code-size and stack - one memory segment. Therefore the
memory ‘limit’ is not even 64k, as in non-mapped C, but only 16k - but with a difference: 16k
per function!

Got it?

That’s exactly the same limit when you are programming memory-mapped programs in
assembler. And you have to use the same old tricks for accessing data outside of a segment.

To create WiOS-’executables’, the linker has to be told that the task has to start at 4000h.
This can be achieved with the option ‘/P:4000’ as the first argument in the L80 command-line.
We get a COM-file that has about 16k of zeroes. This file must be left AS IS. With the
Application-Creation-Toolkit (the disk and the documentation you just received ;) there comes
the most important program for creating tasks and drivers, MAKDRV.COM, with which it is
possible to make real BIG applications.

Although execution speed has never had the highest priority while developing WiOS,
efficiency was. Therefore tasks and drivers do not contain a single file for each 16k-block, but
all code is stored in one file. That makes loading time faster, saves a lot of harddisk space
(since every file takes at least 8, 16 or 32 kilobytes, even if it’s size is only one byte!) and
looks just nicer than ‘TASK.001’, ‘TASK.002’, ..., ‘TASK.9999999’ - finally it’s also easier to
spread the program in mailboxes. MAKDRV creates this from all your COM-files, cuts the
16k-zeroes-header and fills some important information in the file-header, like the number of
blocks the file contains and how large each part is - since it would be a waste of resources if
every code-segment would always take 16k or harddisk-space in the file. Also, there is the
possibility of making crypted files. WiOS would decrypts them on-the-load, but this is not yet
supported (it depends on the inquiry ;)

Returning on how to compile bigger programs: If you write larger programs, you split it into
16k blocks. For that, you have to think a little bit about the structure of your program,
because it would be a waste of memory, if you just say ‘Okay, one segment per function,
even if it’s only ADD HL,HL and RET’. Since for ‘sending’ variables to other segments, you
need to store them in your data-segment and restore them in the called routine in the other
segment, it’s advisable to make ‘bundles’ of functions that need to interact a lot with each
other, and put them into one 16k-segment. That saves execution time, because switching
segments always needs a lot of time. Also with functions in one segment, you may use the
‘standard’ C variable-accessing structure. Calling functions in other segments bring up one
more problem: If you change a routine in another block, the address of the following functions
are not the same.

 - Application Programming Documentation

Page 22

How does the caller know the address of a routine in another segment?
It’s the same conventional way as programming non-WiOS-inter-segment functions. The key-
word is, again, ‘indirect access’. Each part has to have a fixed table where the current
addresses are stored. So tasks do not call functions like ‘go to function at address 4056h’ but
‘go to the first function in segment x’. How this table is created, and where it stands, is written
later in this documentation.

 - Application Programming Documentation

Page 23

3.13 Basics
This section explains exactly what is needed to use the full possibilities of WiOS and how it is
done. All explanations focus on writing programs in C - if you want to create WiOS-
applications in pure assembler, please refer to chapter ?? where you can look up how to
emulate the C-structure. No special programming-course is given for assembler, so you will
have to adapt it yourself with the information given on the following pages for C.

The Basics contain the following parts:

An explanation, how the variables of the Global Data Area must be interpreted and used in
own applications, how maximum compatibility to future versions of WiOS is guaranteed, a
detailed information about how WiOS functions can be accessed from other programs, how
simple data can be sent and what parts of WiOS can be called, and finally what data WiOS
returns to the tasks.

3.13.1 Accessing the Global Data Area
As for the linker, all external functions you want to call from a task must be linked to your
executable. It is, of course, not possible to link the complete WiOS with your task, since
WiOS itself is larger than 64KB and this would be in opposite of the possibility of using
functions from other tasks. Another way of accessing functions without linking was developed
for WiOS.

For all tasks and drivers, you need to link the GDA-file which contains the addresses of the
globals which allow tasks to access WiOS functions and variables. This file only contains
labels that point to a specific address-table in page 3, the area above C000h, so it does not
take a single byte of memory in your program! The linker just takes the addresses and fills
them at the respective calls in your routines.

ALL GDA-ENTRIES ARE POINTERS.

So NEVER call or access them directly! Always use the address where the entry points to.

Always include the file ‘GDA.H’ if you want to have access to WiOS (which is always the
case!)

3.13.2 Compatibility
WiOS will not always be the same. It will be changed ever and ever again. To keep maximum
compatibility, please take care of the following points:
- Never write down the address in the GDA and call it directly. Always use indirect calling!
Look up the pointer in the GDA and jump to it.
- Never use the area above the GDA! WiOS might expand. There are global storage-areas
for your data. Use them.

In return, it is guaranteed that the existing GDA will NEVER change - only expand. If you call
the first pointer in the GDA, it will lead you to the same function in WiOS version 1.0 Alpha as
well as in WiOS ‘98 ;) If a new function is written, a new GDA-entry at the end of the list will
be added. The old pointers will always exist!

 - Application Programming Documentation

Page 24

3.13.3 Calling WiOS-Functions
In C, functions are normally called using a syntax like

function();

where the code generated for this function always calls the address ‘function’ directly. In
WiOS, functions and variables also have labels. All pointers in the GDA are named after their
function they point to with a leading underscore.

To call at an address where a variable points to, the syntax looks a bit different. Since we
have indirect addressing, our example-label would not point to the function itself but to an
address in the GDA which contains the address of the function. This label would be named
with a leading underscore: ‘_function’. In C, the contents of a pointer is accessed with an
asterisk before the label-name. To call the address of where a pointer points to, the label and
the asterisk must be surrounded by brackets.

To call to the address where the label points to, write

(*_function)();

Easy, eh?

There are only very few functions that are called directly via the GDA. Many parts of WiOS
are not mapped in at calling time. Since they are ‘normal’ drivers, they are also in page 1,
from 4000h to 7FFFh - where the calling task is. Another indirection is used: Tasks do not
call the driver itself. They call a function which maps in the driver, calls it, restores the
segment and returns to the task. This function is called ‘caldrv’ - which means ‘call driver’.
The referring GDA-entry is named ‘_caldrv’. Whenever a WiOS-function is called, it’s always
called with

(*_caldrv)(...);

where ‘(...)’ stands for the arguments you are sending to the ‘caldrv’ function.

WiOS needs to know which driver you want to call. Normally, you can search the driver by its
name and receive the handle. But there are some standard drivers which are always loaded
when WiOS is started. These handles can also be found in the GDA.

The standard-drivers with their correct names are in alphabetical order:
(for a detailed list of included functions in the drivers, see chapter ??)
_hextdrv External driver (internal WiOS-functions that didn’t fit in the internal part)
_hfsdrv File-System driver (used for all file-operations)
_hgiodrv Graphic I/O driver (loads fonts and icons)
_hgrpdrv Graphic driver (handles graphic-output to the screen)
_hmemdrv Memory driver (handles all mapping stuff)
_hstddrv Standard driver (standard functions)
_htaskdrv Task driver (do anything with tasks)
_hwindrv Window driver (guess what!)

 - Application Programming Documentation

Page 25

Always remember that the GDA is a pointer list. These variables do not contain the handle
itself but the address where the handle is stored. In C, again, this is very simple. The first
argument for the ‘caldrv’-function is the handle of the driver. So just write

(*_caldrv)(*_hwindrv); does work

to access the window-driver. Indirect addressing looks a bit strange, since you need brackets
for calling the function, but not for getting the handle - but as brackets for the function-
arguments are needed, it looks twice the same, the function and the argument. For
comparison, here’s the corresponding command in direct addressing:

caldrv(hwindrv); does NOT work

Each driver can have more than one function (of course), so we need to tell the task which
function we want to call. These functions are numbered in a possible range from 1 to 32767.
The ‘standard’ drivers (i.e. all 8 drivers mentioned before) are numbered linear, beginning
with 1.

As function 4 in the window driver does something completely different than function 4 in the
graphic driver, take care not to access the wrong driver.

For making things easier, the function-numbers of all drivers can be accessed via text. Each
driver has its own Header-file where all functions are defined. If you want to get the current
data of a window at address 5000h, the source-code looks like this:

(*_caldrv)(*_hwindrv,GET_WIN_STATE,0x5000);

where ‘hwindrv’ means ‘handle of window driver’.
For accessing the driver’s functions by names, you have to include the header files -
‘WINFNC.H’ if you need the window-driver functions.

There are some functions that can be called directly (via the indirect way through the GDA).
They can be found in chapter ?? where all GDA pointers are listed.

3.13.4 Return Values
Every driver-function returns a 16-bit unsigned integer. But not all functions return a
reasonable value (because they do not need to return anything). Functions that return one
value return it directly from the function. Functions that return several values return a pointer
to an address where the return values are stored. See the description of the driver functions
in chapter ??

3.13.5 Definitions
If you encounter variables or structures which are non-standard C types, you will find their
definition in one of those files in most cases. These header files contain the following
definitions:
GDA.H global data area variables
DEF.H type and global definitions
DEFSTR.H structure definitions of blocks
EVENTFNC.H event definitions

 - Application Programming Documentation

Page 26

3.14 Function Reference (WiOS Drivers)
This chapter contains a complete documented list of all functions of the drivers which are
available when WiOS has been started. Each header contains:
� the description of the driver
� the driver-name (for searching purpose, although this is not necessary since the handles

of all standard-drivers can be found in the GDA)
� the label-name of the pointer to the driver’s handle in the GDA
� the header-file with the definitions

This is only for referral use. You will not find programming techniques or fields of application.

Important:
� The function number is always 16-bit unsigned integer!
� The return value is always 16-bit unsigned integer! Sometimes you need to convert it to 8

bit!
� The return value -1 means 65535!
� Functions marked as ‘used internally’ are only for internal use of WiOS and are NOT (yet)

for universal use. These functions are NO dummies - using them may result in
unpredictable actions or unstability of WiOS.

 - Application Programming Documentation

Page 27

3.14.1 External Driver
Description: External driver
Driver-Name: "External Driver"
GDA: _hextdrv
Header-File: EXTFNC.H

Function Name Number Function
- 1 used internally
Arguments -
Return -

Function Name Number Function
RESKEY 2 clear keyboard-buffer of calling task
Arguments -
Return -

Function Name Number Function
GETKEY 3 get next keyboard-character in buffer of calling task
Arguments -

0 if no key has been pressed since last GETKEYReturn
1..255 character-code of the key

 - Application Programming Documentation

Page 28

3.14.2 File-System Driver
Description: File-System driver
Driver-Name: "File-System"
GDA: _hfsdrv
Header-File: FSFNC.H

All disk-functions have the same numbers and names as their corresponding DOS 2-
functions.

These functions were not complete at the time when this documentation was printed, so for a
description look in the Application Creation Toolkit.

If you want more DOS functions to be supported please let me know.

Function Name Number Function
_SELDSK 0x0e set current drive
Arguments -
Return -

Function Name Number Function
_CURDRV 0x19 get current drive
Arguments
Return

Function Name Number Function
_RDABS 0x2f absolute sector read
Arguments
Return

Function Name Number Function
_WRABS 0x30 absolute sector write
Arguments
Return

Function Name Number Function
_FFIRST 0x40 find first entry

char * pointer to filename / file info block
char * pointer to new file info block

Arguments

char search attributes
Return

Function Name Number Function
_FNEXT 0x41 find next entry
Arguments char * pointer to file info block
Return

Function Name Number Function
_OPEN 0x43 open file handle

char * pointer to filenameArguments
int mode
0 errorReturn
1..255 file handle

Function Name Number Function
_CREATE 0x44 create file and open handle
Arguments
Return

 - Application Programming Documentation

Page 29

Function Name Number Function
_CLOSE 0x45 close file handle
Arguments int file handle

0 doneReturn
1..255 error

Function Name Number Function
_READ 0x48 read from file handle

int file handle
char * destination address (4000h...BFFFh)
unsigned len (0..16384)
T_SEG destination segment (0..3071)

Arguments

char dummy (must be 0!) mode (CRC, CRYPT)
0 doneReturn
1..255 error

Function Name Number Function
_WRITE 0x49 write to file handle
Arguments
Return

Function Name Number Function
_SEEK 0x4a seek (position file pointer)

int file handle
unsigned offset (0..65535)

Arguments

char mode 0 from start of file
1 from end of file
2 relative to current position

0 doneReturn
1..255 error

Function Name Number Function
_DELETE 0x4d delete file or subdirectory
Arguments
Return

Function Name Number Function
_RENAME 0x4e rename file or subdirectory
Arguments
Return

Function Name Number Function
_MOVE 0x4f move file or subdirectory
Arguments
Return

Function Name Number Function
_ATTR 0x50 change file or subdirectory attributes
Arguments
Return

Function Name Number Function
_FTIME 0x51 get/set file date and time
Arguments
Return

Function Name Number Function
_VERIFY 0x58 get verify flag setting
Arguments
Return

 - Application Programming Documentation

Page 30

Function Name Number Function
_GETCD 0x59 get current directory
Arguments
Return

Function Name Number Function
_CHDIR 0x5a change current directory
Arguments
Return

Function Name Number Function
_PARSE 0x5b parse pathname
Arguments
Return

Function Name Number Function
_FORMAT 0x67 format disk
Arguments
Return

Function Name Number Function
_D2V 0x80 read directly from file handle to port-address (e.g. VRAM)

int handle
unsigned len

Arguments

char port
0 doneReturn
1..255 error

 - Application Programming Documentation

Page 31

3.14.3 Graphic I/O Driver
Description: Graphic I/O driver
Driver-Name: "Graphic-IO Driver"
GDA: _hgiodrv
Header-File: GIOFNC.H

Function Name Number Function
- 1 used internally
Arguments -
Return -

Function Name Number Function
- 2 used internally
Arguments -
Return -

Function Name Number Function
- 3 used internally
Arguments -
Return -

Function Name Number Function
GET_VHANDLE 4 get handle of a file in Videoram-Directory (used for finding font- and

icon-handles)
char ICON for icon

FONT for font
Arguments

char * filename
0..65534 handle of icon/fontReturn
-1 file not found

Function Name Number Function
ADDFONTLIB 5 load a font from disk
Arguments char * filename

0..65534 handle of loaded fontReturn
-1 file not found

Note Don’t overload memory!!! No checking is done yet!

Function Name Number Function
- 6 used internally
Arguments -
Return -

 - Application Programming Documentation

Page 32

3.14.4 Graphic Driver
Description: Graphic driver
Driver-Name: "Graphic Driver"
GDA: _hgrpdrv
Header-File: GRPFNC.H

Function Name Number Function
MOUSEBOX 1 set the box where the mouse can move

absolute coordinates - corners must be in the order upper-left / lower-right!
int
int

x coordinates of upper left corner
y

int

Arguments

int
x coordinates of lower right corner
y

Return -

Function Name Number Function
PPOINTER 2 put the mouse-pointer at absolute coordinates on the screen

absolute coordinates
int

Arguments

int
x coordinates of mouse-pointer
y

Return -
Note If the coordinates are outside of the mousebox, it will ‘jump’ into them at the

next interrupt!)

Function Name Number Function
MOUSEMOVE 3 move mouse according to the user-movement (not necessary!)
Arguments -
Return -

Function Name Number Function
STOREBOX 4 store current VDA-coordinates
Arguments -
Return -
Note There is only set of VDA-coordinated to be stored! Since this functions is

also used by WiOS, the function RESTOBOX might not restore the
coordinates you stores after a polling or calling the window-driver!

Function Name Number Function
RESTOBOX 5 restore the last set of VDA-coordinates stored with STOREBOX
Arguments -
Return -
Note see note at STOREBOX

Function Name Number Function
SETBOX 6 set valid display area (VDA)

absolute coordinates
int
int

x coordinates of first corner
y

int

Arguments

int
x coordinates of opposite corner

Return -
Note corners may be set freely - they are adjusted to upper-left / lower-right

 - Application Programming Documentation

Page 33

Function Name Number Function
COPY 7 copy graphic area corresponding to VDA

int
int

sx coordinates of upper left corner from source-area
sy

int
int

nx width of area to be copied
ny

int

Arguments

int
dx destination coordinates
dy

0 area was fully copied (destination is in VDA)
1 nothing was copied (destination is totally out of VDA)

Return

2 area was cutted (destination is partially out of VDA)
Note copy-direction is corrected automatically if source and destination intersect

Function Name Number Function
PUTICON 8 puts icon on screen corresponding to VD

0..32767 handle of standard-icon from VRAMint

–1 icon graphic-data comes from memory and
‘*_adrblk’ must contain the following information:
offset len
+0 2 address,
+2 2 segment of icon-graphic-data

(32768 color mode)
+4 2 width,
+6 2 height of icon

int

Arguments

int
x coordinates of destination
y

0 icon was fully put (destination is in VDA)
1 nothing was put (destination is totally out of VDA)

Return

2 icon was cutted (destination is partially out of VDA)

Function Name Number Function
EXPICON 9 expand icon - fill complete VDA with icon

0..32767 handle of standard-icon from VRAMint

–1 icon graphic-data comes from memory (see
PUTICON for data of ‘*_adrblk’)

int

Arguments

int
x coordinates
y

Return -
Note x,y-coordinate set the destination of the ‘master’-icon. The area around this

icon is tiled with the same icon

Function Name Number Function
SETFONT 10 set current font
Arguments int font-handle
Return height of font
Note no error-checking for the font-handle is done. If a non-existing font-handle

is sent, the height of the current font is returned and nothing is changed

Function Name Number Function
SETCOL 11 set the font-color

int foreground colorArguments
int background color

Return -
Note color 0 is transparent

 - Application Programming Documentation

Page 34

Function Name Number Function
SETPOS 12 set current text-position

int
int

x coordinates of text-position
y

Arguments

int distance in pixels between characters
Return

Function Name Number Function
WRTTXT 13 write text to the screen according to VDA

char * address of string
T_SEG segment of string
int len 0 all characters until byte ‘0’ are written

1..32767 characters are written

Arguments

char flags not used yet... must be 0
Return total len of text in pixels (NOT the length of displayed text)
Note distance between characters is set with function ‘SETPOS’ font color 0 is

transparent
every underscore will underline the next character

Function Name Number Function
GETTXTLEN 14 get len of null-terminated string in pixels

char * address of stringArguments
T_SEG segment of string

Return -
Note distance between characters is set with function ‘SETPOS’

every underscore will underline the next character

Function Name Number Function
GETCHARS 15 get number of characters fitting in given width

char * address of string
T_SEG segment of string
int width of area in pixels

Arguments

char direction 0 forward (increment text-pointer)
1..255 backward

Return number of characters

Function Name Number Function
BOX 16 draw colored box on screen according to VDA

int
int

x coordinates of upper left corner
y

int
int

nx width of box
ny

int 0..32767 color of box

Arguments

int logical operation (see V9990 technical manual)
Return -

Function Name Number Function
GETBOX 17 get current VDA-coordinates
Arguments -
Return address of data-block

offset len
+0 2 x-coordinate of upper left corner
+2 2 y
+4 2 x-coordinate of lower right corner
+6 2 y

Note use this function to store current VDA-coordinates permanently in your own
memory-area (better than STOREBOX when polling or calling the window
driver)

 - Application Programming Documentation

Page 35

3.14.5 Memory Driver
Description: Memory driver
Driver-Name: -
GDA: _hmemdrv
Header-File: MEMFNC.H

This driver is in the internal WiOS-part and has no name!

Function Name Number Function
ALLSEG 1 allocate one new segment
Arguments T_TASK 0..252 task’s handle

-1 no more free segmentsReturn
0..32767 number of the segment

Function Name Number Function
ENASEG 2 enable segment in page 1 / 2

T_SEG 0..32767 number of the segmentArguments
char 1 page 1: 4000h-7fffh

2 page 2: 8000h-bfffh
0 segment was enabled
-1 segment could not be enabled (out of range)

Return

-2 segment was not allocated

Function Name Number Function
FRESEG 3 free allocated segment
Arguments T_SEG 0..32767 number of the segment

0 segment was freed
-1 segment could not be freed (out of range)

Return

-2 segment was not allocated by this task
Note After freeing a segment should be paid attention NOT to write in the area

where the segment was if no other segment has been enabled at this page

 - Application Programming Documentation

Page 36

Function Name Number Function
GETSEG 4 get status of segment
Arguments T_SEG 0..32767 number of the segment

0..252 task/driver’s handle which allocated the segment
253 used by a non specified application (was allocated when WiOS

started)
254 too slow memory for CPU (e.g. Sony mappers in turbo mode)

Return

255 segment is free

Function Name Number Function
- 5 used internally
Arguments -
Return -

Function Name Number Function
SEGCPY 6 copy a given number of bytes from one segment to another

relative addresses in segments: range is from 0..3fffh
T_SEG 0..32767 source segment
T_SEG 0..32767 destination segment
unsigned 0..16383 source address
unsigned 0..16383 destination address

Arguments

unsigned 0..16384 number of bytes to be copied
0 data was copiedReturn
-1 out of range:

- src is > 16383 or
- dest is > 16383 or
- length of the block exceeds the src- or dest-segment

Note no checking is done whether the segments are allocated or to which task
they belong

Function Name Number Function
SEGNCPY 7 copy bytes from one segment to another until a given byte is found

relative addresses in segments: range is from 0..3fffh
T_SEG 0..32767 source segment
T_SEG 0..32767 destination segment
unsigned 0..16383 source address
unsigned 0..16383 destination address
unsigned 0..16384 number of bytes to be copied

Arguments

char 0..255 termination byte
-1 see SEGCPYReturn
1..16384 number of bytes copied

Note no checking is done whether the byte exists. SEGNCPY will copy data until
the termination byte is found - with all consequences! Make sure that it is in
a valid range!!!

 - Application Programming Documentation

Page 37

3.14.6 Standard Driver
Description: Standard driver
Driver-Name: -
GDA: _hstddrv
Header-File: STDFNC.H

This driver is in the WiOS-kernel and has no name!

Function Name Number Function
ADDINT 1 add an interrupt

T_TASK 0..252 task/driver’s handle
T_SEG 0..32767 segment

Arguments

unsigned 4000h..7fffh address of interrupt-routine
0..MAXINT interrupt handle (‘MAXINT’ is in DEF.H)Return
255 no more interrupts...

Note interrupt-routine may not EI

Function Name Number Function
DELINT 2 remove an interrupt
Arguments T_INT interrupt handle

0 interrupt was removedReturn
255 interrupt could not be removed

Function Name Number Function
DRAG 3 starts a drag-operation
Arguments -
Return -
Note under construction! Do not use yet!!!

 - Application Programming Documentation

Page 38

3.14.7 Task Driver
Description: Task driver
Driver-Name: -
GDA: _htaskdrv
Header-File: TASKFNC.H

This driver is in the internal WiOS-part and has no name!

Function Name Number Function
- 1 used internally
Arguments
Return

Function Name Number Function
LOADTASK 2 load a task from disk
Arguments char * pointer to drive+path+filename string

-1 if task could not be loadedReturn
0..252 handle of task

Function Name Number Function
- 3 used internally
Arguments -
Return -

Function Name Number Function
KILLTASK 4 remove a task from memory and free all segments and interrupts
Arguments T_TASK task handle

0 event was sentReturn
-1 task does not exist

Note not yet supported!!!

Function Name Number Function
S_NAME 5 search by name if a task/driver is currently present (loaded)
Arguments char * pointer to name-string of task to be searched

0 not foundReturn
<>0 address of data block

offset len
+0 2 handle of found task/driver
+2 2 version number

Note String must be between 4000h and 7fffh

Function Name Number Function
ADD_EVENT 127 send an event to a task

address of event-block
member function
task handle of the destination task
event event

unsigned

array[] 12 info-bytes for the receiving task

Arguments

char handle of the sending task (filled by WiOS)

Return -
Note event-block must be outside of page 1 & 2 so the receiving task can access

the block without segment switching. It is recommended to use ‘_eventblk’
from GDA to store events

 - Application Programming Documentation

Page 39

3.14.8 Window Driver
Description: Window driver
Driver-Name: "Window Driver"
GDA: _hwindrv
Header-File: WINFNC.H

The function argument-explanation require the definition of
struct WINSTR windat;
as a global variable in the C source-code to have access to the window-structure via names.

If there are problems with some window-specific words in the following list, refer to the
illustration of chapter 3.7.1 - Icons.

Since this is the most complex driver, there are some functions which are not yet
implemented. Still there is enough functionality to write normal applicationsand most of the
missing functions (some of them are not mentioned by name, so you won’t get to know what
was planned and therefore you might probably not miss them >;->) can be simulated with
some ‘work-arounds’. Also remember that although the functions have been tested
intensively there are cases which have never been tested before - especially working with
pane windows.

 - Application Programming Documentation

Page 40

3.14.8.1 The Window Structure

Type Name Description Note
int handle window-handle Identifies each window - no windows have the

same handle
int x
int y

absolute position on screen

int nx width of visible
work-area

int ny height of visible
work-area

The visible work-area is always guaranteed to be
free for the task’s use. Window-icons do NOT use
this area since WiOS puts them ‘around’ the
window - except for the following cases, where the
icons are copied into the user-area:
• Back-, Close- or Toggle-Size-Icon, if there’s

no title-bar
• Resize-Icon, if there is no scrollbar

int vx virtual width of
window

int vy virtual height of
window

Is only needed for calculation of the scrollbars and
may be 0 if you have none

int scrx horizontal
scroll-offset

int scry vertical scroll-
offset

always contains the absolute offset in pixels to the
upper left corner of the window (like SET SCROLL
in basic) and is not needed without scrollbars

int minx min. width of
window

int miny min. height of
window

contains the minimum size of the window, which
can be scaled by the user - does only prevent the
user to create smaller windows using the mouse,
NOT changes made manually from a task!

int maxx max. width of
window

int maxy max. height of
window

see minimum-size

int behind handle of the window in front (see below)
can be used to check the level of the window

T_TASK task task which
created this
window

used internally to determine which task has to be
informed if the user drags a window and to close
all related windows if a task is closed

bitmapped window-area flags
bit function
7 unused (must be 0)
6 not yet implemented (must be 0)
5 not yet implemented (must be 0)
4 not yet implemented (must be 0)
3 auto-repeat on arrow-icons
2 window is pane-window (see ‘parent’ below)
1 window can be dragged (via title bar)

char winflag

0 0: redraw from task needed
1: WiOS can redraw the whole window (not yet implemented)

bitmapped window-icon flags
specifies the WiOS-controlled icons of a window
bit function
7 unused (must be 0)
6 horizontal scrollbar
5 adjust-size icon
4 vertical scrollbar
3 toggle-size icon
2 title-bar
1 close icon

char iconflag

0 back icon

 - Application Programming Documentation

Page 41

Type Name Description Note
bitmapped window-work-area flags (see below)
bit function
7 unused (must be 0)
6 unused (must be 0)
5 double-click notifies task
4 release over work-area notifies task (for drag & drop)
3 click notifies task (once)
2 click notifies task (always)
1 notify task continually while pointer is over work area

char workflag

0 ignore all clicks
int parent handle of parent window

-1: window is a parent window (i.e. can have pane windows)
0..255: handle of the parent window, if window is a pane window
Pane windows are ‘connected’ to their parent windows, i.e. if a
parent window is opened on front or on back, all pane-windows will
stay directly in front of the parent window.
If a parent window is closed, all connected pane windows will also
be closed.
Note that pane windows are NOT moved in the x- and y-position, if
the parent window is
bitmapped window-status flags
bit function
7
6
5
4
3
2

unused (must be 0)

1 window is minimized (not yet implemented: 0!)

char statflag

0 window is maximized (not yet implemented: 0!)
int realnx ‘real’ width of window on screen
int realny ‘real’ height of window on screen
char dummy[25] These bytes are to fill the window data block up to 64 bytes and are

reserved for future use, so always fill them with 0

 - Application Programming Documentation

Page 42

3.14.8.2 Window Driver Functions

Function Name Number Function
CREATE_WIN 1 add window to list and send open-event
Arguments unsigned address of window-data-block

needed members:
x,y
nx,ny
vx,vy
scrx,scry
minx,miny
maxx,maxy
behind -2 back

-1 front
0..255 specified window

if window is a pane window, ‘front’ always means on top of the
pane window block, and ‘back’ means directly above the
parent window (on back of pane window block)
winflag
iconflag
workflag
parent -1 window is parent

0..255: handle of parent window
statflag must be 0
dummy[25] all 25 bytes must be 0

-1 window could not be createdReturn
0..255 handle of the new window

Note the members handle, task, realnx and realny are filled by WiOS, no matter
if they have valid data or not! This function always creates a new window
after ‘CREATE_WIN’ the window is NOT drawn on the screen! It is only
registered and an ‘OPEN ‘ event is sent to the task after the next polling!

Function Name Number Function
OPEN_WIN 2 change data of existing window in list, calculate new position and

send redraw-events to all affected tasks
Arguments unsigned pointer to window-data (see above)

-1 window could not be openedReturn
1..255 number of windows opened (incl. pane windows)

Note Window-data must be valid and complete so call GET_WIN_STATE
before!!!
If the behind value changes, all pane-windows (if window is a parent) are
also changed so they are always directly above the parent window be sure
use this function only on windows belonging to your task!!!

 - Application Programming Documentation

Page 43

Function Name Number Function
CLOSE_WIN 3 remove window and all connected pane-windows from list and send

redraw-events lower window’s tasks
Arguments unsigned 0..255 handle of window to be closed

-1 window could not be deletedReturn
1..255 number of windows closed (incl. pane windows)

Note be sure use this function only on windows belonging to your task!!!

Function Name Number Function
GET_WIN_STATE 4 copy window-data from list to task’s memory
Arguments unsigned address where the data has to be copied

member ‘handle’ must contain the window-handle
0h-FFFEh address of window-data (=the address sent)Return
-1 window could not be found

Function Name Number Function
DRAWFRAME 5 draw window frame

int destination x-coordinate
int destination y-coordinate
unsigned pointer to address of window structure

member ‘handle’ must contain the window-handle

Arguments

char must be ‘0’
Return -
Note no validity checking for the window-handle is done is called automatically by

‘GETWIB’

Function Name Number Function
GETWIB 6 get window-information-block for redraw
Arguments unsigned 0..255 handle of window

0h-FFFEh address of WIBReturn
-1 window could not be found

Note For the structure of the WIB (window-information-block), see chapter
3.19.1.2 - Redrawing Windows

Function Name Number Function
COPYWIN 7 copy graphic area to display-screen using the redraw-stack
Arguments unsigned address of WIB
Return -
Note VDA is changed

WIB must be outside page 1 and 2 (‘GETWIB’ always returns a correct
address)

Function Name Number Function
- 8 used internally
Arguments -
Return -

Function Name Number Function
DRW_MENU 9 draws a menu corresponding to the task’s data
Arguments
Return
Note for detailed information on menus see chapter 3.18 - Menu Reference

Function Name Number Function
CHK_MENU 10 check coordinates and return the item number
Arguments

-1 no item at these coordinatesReturn
0..32767 number of item

Note for detailed information on menus and return values see chapter 3.18 -
Menu Reference

 - Application Programming Documentation

Page 44

Function Name Number Function
- 11 used internally
Arguments -
Return -

Function Name Number Function
- 12 used internally
Arguments -
Return -

Function Name Number Function
- 13 used internally
Arguments -
Return -

 - Application Programming Documentation

Page 45

3.14.9 Direct Calls
WiOS has calls which can not be accesses via the drivers. They must be called directly.

The variables are declared in ‘GDA.H’. The list shows the usage of the commands in C-code.

(*_poll)((unsigned)mask)

Calls the poll routine with an event mask (events whose bits are set in the mask are not sent
to the task). It returns the address of the ‘event block’. This block is defined in ‘DEFSTR.H’
and has the structure described in chapter 3.15.1 - Event Block Structure.

(*_caldrv)((char)d_handle , (D_FNC)func , (unsigned)arg1 , (unsigned)arg2 , ,...)

Calls the driver-caller, a routine which calls the driver with the handle ‘d_handle’, and sends
the function number as the first parameter, then the arguments.

(*_cal_seg)((unsigned)addr , (T_SEG)seg , (char *)block)

Only for tasks!!! Switch to the multi part segment ‘seg’, call the address which is pointed to by
‘addr’ and send ‘block’ as the address of ‘adrblk’. The stack pointer of the old segment is
saved and the one of the new segment is restored. The address of the routine to save the
stack, restore the caller’s segment and restore the old stack is put on the stack of the called
function, so the return from a multi part function is simply done with a ‘RET’ instruction or with
normal end-of-function in C. This function always returns a 16-bit value (in HL) to the caller
function. Multi part functions can be nested as long as the stack does not underflow the 16k
of the task or (which is more likely) the task’s code is overwritten. No checking is done for
that.

(*_dcal_seg)((unsigned)address , (T_SEG)segment , (char *)block)

Only for drivers!!! Switch to the multi part segment ‘seg’, call the address which is pointed to
by ‘addr’ and send ‘block’ as the address of ‘adrblk’. The stack pointer is not changed, since
drivers use the WiOS-stack. The address of the routine to restore the caller’s segment is put
on the stack of the called function, so the return from a multi part function is simply done with
a ‘RET’ instruction or with normal end-of-function in C. This function always returns a 16-bit
value (in HL) to the caller function. Multi part functions can be nested as long as the stack
does not underflow the upper barrier of the GDA - else strange things may happen and the
system will be instable. Since there’s more than 4k of free stack size, this should never
happen (I know, I know, 10 years ago, somebody said ‘640K should be enough for
everyone!’)

 - Application Programming Documentation

Page 46

3.15 Event Reference
The following events are defined as the ‘standard’ events and event handlers should be able
to deal with them.

The following list gives their name, number and the needed arguments if you send the data -
and this is also the structure for the task receiving the data. In contrary to subroutine calls,
these events do never return a value since the program receiving the events is not called
immediately. An event is just a block of data which is put on a stack, telling the destination
task after the polling that it should do something. Due to this fact, you should care about
sending the correct data. Keep in mind that it is normally not your program receiving the data
you send, and tasks from other people might not have such a powerful error-handling routine
like your tasks have. Also, the events are sent one by one after each polling - so if you put 50
events on the stack, it will take a while to ‘clear’ it.

Event names with an asterisk (*) are sent by WiOS and should NOT be sent by any task.
They should be handled as ‘receive-only’!!!

3.15.1 Event Block Structure
Every event contains a block of 16 bytes for data storage:

Type Name Description
T_TASK task handle of destination task
D_FNC event event number
unsigned array[6] for data storage
char sender handle of source task which sent this event

This structure is defined as ‘EBSTR’ in ‘DEFSTR.H’

3.15.2 Event Definition
Event names are in ‘EVENTFNC.H’

 - Application Programming Documentation

Page 47

Function Name Number Function
E_NULL 0 Null-Event
Arguments -

Function Name Number Function
E_REDRAW 1 window redraw request
Arguments array[0] handle of window to be redrawn
Note

Function Name Number Function
E_SCROLL 2 window scroll request

task sender (this task)
array[0] handle of window to be scrolled
array[1] horizontal scroll offset (absolute)

Arguments

array[2] vertical scroll offset (absolute)
Note An ‘E_WOPEN’ event is sent immediately after the scroll event to the task.

The task only has to determine whether the new scroll offsets are accepted
or not and, if yes, update the window data.
Tasks which send a scroll request to windows of other tasks should take
care to send the ‘E_WOPEN’ event immediately after it.

Function Name Number Function
E_WOPEN 3 window open request

task sender (this task)
array[0] handle of window to be opened
array[1] behind value
array[2]
array[3]

upper left x,y-coordinates of window position

array[4]

Arguments

array[5]
width and height of work-area

Note Width and height are the work-area dimensions, not the real window size

Function Name Number Function
E_WCLOSE 4 window close request

task sender (this task)Arguments
array[0] handle of window to be closed

Function Name Number Function
E_PNTOUT 5 pointer has left window
Arguments array[0] handle of left window

Function Name Number Function
E_PNTIN 6 pointer has entered window
Arguments array[0] handle of entered window

Function Name Number Function
E_MCLICK 7 mouseclick

array[0] handle of window which has been clicked
array[1]
array[2]

coordinates of pointer where click was (absolute)

bitmapped click-type (bit is set if clicked)
bit function
0 left button is pressed
1 left button is held
2 right button is pressed

array[3]

3 right button is held

Arguments

array[4] the time (16-bit-counter) when the click was performed
Note Coordinates do not give the actual coordinates of the pointer but the

coordinates of where the pointer was on click-time.

Function Name Number Function

 - Application Programming Documentation

Page 48

E_EDRAG 8 end of a drag operation
task sender (this task)
array[0] data-type

Arguments

array[1] detailed information on data
Note For the data-type see chapter 3.16.2 - Data Type Definition

Function Name Number Function
E_WKAREA * 9 pointer is over work-area (only if bit 1 of work-area flag is set)
Arguments array[0] handle of window below pointer

Function Name Number Function
E_MENU * 10 not yet supported
Arguments -
Note does not need to be handled!!!

Function Name Number Function
E_SHUTDOWN 11 requests the task to be closed
Arguments -
Note does not need to be handled!!!

Function Name Number Function
E_USERMSG 16 user definable

task sender (this task)
array[0] user-message code

Arguments

array[1..5] user definable
Note must be handled even if the task shall not receive external data!!!

 - Application Programming Documentation

Page 49

3.16 Data Exchange Specification
These events are the so-called ‘user-events’. They are sent by the E_USERMSG event and,
although the data has no effect on WiOS itself, you should use the following definition for
standard data transfer to other tasks so every programmer who read this documentation can
write applications which can handle this kind of data (well, I’m quite sure there will be no
programmers writing programs for WiOS without having read this ;)

3.16.1 Execution of a data exchange
To send data to other tasks, a special procedure is needed. First, an end-of-drag-event
(‘E_EDRAG’) with the basic data-type must be sent to the destination task. Although it could
be possible that the destination task masked out this event, it is strongly recommended not to
do that. Normally, the destination task receives this event and has to answer. As soon as the
source task (sender) receives the message ‘SEND’, it can send the destination task the
‘DATA’ message with detailed information about where the data is and what type and size
this data has.

If a task shall not receive any data, it should also answer the end-of-drag event with the
message ‘NOSEND’ so any source task which wants to send data will know that this task will
not receive data.

Between these steps, it is required that these tasks poll. And, as if it wouldn’t be hard enough
already, each task should also be prepared that the next event after polling is not the answer
but could also be a open or redraw request.

The program flow looks like this:

Source Task Destination Task
send ‘E_EDRAG’ event with data-type
poll

answer with ‘SEND’ or ‘NOSEND’ message
poll

check for ‘standard’ events (and if yes, poll again)
check for ‘SEND’ or ‘NOSEND’ message
these steps are only necessary if the ‘SEND’ message was sent
if ‘SEND’, send ‘DATA’ message with details
poll

check for ‘standard’ events (and if yes, poll again)
handle reception of data

From this flowchart you can see that this process is not too hard to handle. When viewing
each task as separate, the sender has to send the ‘E_EDRAG’ event and poll as long as the
‘SEND’ or ‘NOSEND’ message comes, then send the data (if destination task wants to) and
poll again.

For the destination task, it’s even simpler: it evaluates the ‘E_EDRAG’ event and sends either
‘SEND’ or ‘NOSEND’ message, then polls. If it wants to receive the data, it polls until the
‘DATA’ message comes, else it’s finished. Nothing else than sending the ‘NOSEND’
event must be done if the task doesn’t need this kind of data.

From this, it is obviously that answering the ‘E_EDRAG’ event is essentially, or else the
source task will ‘hang’ in an endless loop until an ‘E_SHUTDOWN’ event comes.

 - Application Programming Documentation

Page 50

3.16.2 Data Type Definition
This is a weak point. Since I have never been programming on existing multitasking systems,
the data type definition is in no way perfect nor were the data types created from their need in
real applications - there has not been any application for WiOS yet! If you experience any
unusability or if you can write a documentation for an existing, well-working data type
definition, please let me know that as soon as possible. Since this means a change of the
‘standard’ definition given in this documentation, it can only be done in the next weeks during
the alpha-testing phase. If several applications already exist, it will be impossible to define
another standard. But in every case can new types be added to the existing definition - like in
the GDA.

3.16.2.1 Data sent with the ‘E_EDRAG’ event
Data type names in brackets are defined in ‘DTDEF.H’ and must be sent in array[0], the
specifier in array[1].

Data type: 0 (‘TEXT’)
Specifier: 0 (‘STRING’)
Description: One or more text strings with no special function

Data type: 0 (‘TEXT’)
Specifier: 1 (‘FILENAME’)
Description: One or more text strings with filenames to be handled / edited / opened

Data type: 1 (‘GRAPHIC’)
Specifier: 0..255 bits per pixel
Description: One rectangular bitmapped image (resolution is defined in the data itself)

 - Application Programming Documentation

Page 51

3.16.2.2 Data sent with the ‘E_USERMSG’ event
Whenever sending user messages, array[0] holds the user-message code. That is, in this
case, code ‘DATA’, which is defined in ‘DTDEF.H’

Data STRING
array[1] address of data block
array[2] segment of data block
Data Block
Offset Len Valid Entries Description
+0 2 0..65535 number of strings
+2 2 1..3071 number of segments used for data
+4,6,... 2 0..3071 segment numbers with strings
after segment numbers

2 0
1..255

null-terminated strings
number of fields

Arguments

- if strings are null-terminated, the strings come directly after the ‘0’
- if strings are in fields of fixed length, there follows the length of the field

- 2 bytes for each field length. After the length data comes the field-
formatted string data

Note If the strings exceed 16k, it’s up to the program to switch the segments

Data FILENAME
array[1] address of data block
array[2] segment of data block
Data Block
Offset Len Valid Entries Description
+0 2 0..65535 number of filenames
after number of filenames

Arguments

null-terminated strings
Note The filename data structure is exactly like the one of null-terminated strings

- with the difference that the destination task does not have to insert this
data somewhere but to open these filenames. In practice, that means to
load these files – either in new windows for each file or for a slide show,
one after each other, depending on the program. Also it’s up to the
destination task to parse the filename extensions or the files whether they
are valid files for this task!

Data GRAPHIC
array[1] address of data block
array[2] segment of data block
Data Block
Offset Len Valid Entries Description
+0 2 unused
+2 2 1..3071 number of segments used for image
+4,6,... 2 0..3071 segment numbers with image-data
after segment numbers

2 0..65535 width of image
2 0..65535 height of image

Arguments

15-bit-mapped image data (see VDP-spec)
Note If an image exceeds 16k, it’s up to the program to switch the segments

This description may be insufficient since it has been developed only in theory. If you have
detailed information on a better and more efficient data exchange standard, please let me
know as soon as possible!

 - Application Programming Documentation

Page 52

3.17 GDA Reference
This section describes the list of needed GDA variables.

The GDA area starts at C030h. It’s end is open since it can be expanded in future. Do not
change reserved variables. They are not protected, but changing them may result in system
instability or a crash.

IMPORTANT: All GDA variables are pointers to the address of the variable or field.

Type definitions are in ‘DEF.H’

Type Name Offset Len Description
T_SEG *_tot_seg +0 2 total number of segments in computer
T_SEG *_free_seg +2 2 current number of free segments
T_SEG *_tmp_seg +4 2 segment of temporary segment
<unused> +6 2
<internal use> +8 2
T_TASK *_p1_task +10 2 current handle of task in page 1
T_SEG *_p1_seg +12 2 current segment in page 1
char *_p1rseg +14 2 mapper segment number of current segment

in page 1
char *_p1_slt +16 2 slot of current segment in page 1
<unused> +18 2
T_SEG *_p2_seg +20 2 current segment in page 2
char *_p2rseg +22 2 mapper segment number of current segment

in page 2
char *_p2_slt +24 2 slot of current segment in page 2
<internal use> +26 2
unsigned (*_caldrv)(.) +28 2 WiOS-function call entry address
T_TASK *_hmemdrv +30 2 handle of memory driver
T_TASK *_hstddrv +32 2 handle of standard driver
T_TASK *_htaskdrv +34 2 handle of task driver
T_TASK *_hfsdrv +36 2 handle of file system driver
T_TASK *_hgiodrv +38 2 handle of graphic I/O driver
T_TASK *_hgrpdrv +40 2 handle of graphic driver
T_TASK *_hwindrv +42 2 handle of window driver
T_TASK *_hextdrv +44 2 handle of external driver
unsigned *_wiosver +46 2 current version of internal WiOS part
VOID (*_wiosend)() +48 2 WiOS shutdown call (only in Alpha-version!)
unsigned (*_poll)() +50 2 poll entry address
<internal use> +52

to
+106

VOID (*_dump)() +108 2 entry call to make a memory dump on V9958
(argument is address)

struct EBSTR *_eventblk +110 2 address of event-block holding the data after
polling

struct
WIBSTR

*_wibblk +112 2 address of window information block

struct
WINSTR

*_winblk +114 2 address of window data block

unsigned *_act_font +116 2 handle of current font
unsigned *_std_font +118 2 handle of standard (‘system’) font
<internal use> +120 2
char *_busyflag +122 2 status of direct-write VDP status
unsigned *_adrblk +124 2 address of global, segment-switch

independent address block

 - Application Programming Documentation

Page 53

Type Name Offset Len Description
current state of mouse buttons (bitmapped)
bit description
0 left trigger state (1=pressed)

char *_mb +126 2

1 right trigger state (1=pressed)
type of last mouse click (bitmapped)
bit description
0 left single click (1=clicked)
1 left double click (1=clicked)
2 right single click (1=clicked)

char *_cltype +128 2

3 right double click (1=clicked)
time of mouse click (array of 2)
offset description
+0 time of last left-click

unsigned *_cltime +130 2

+2 time of last right-click
int *_coord +132 2 current mouse coordinates (array of 2)
unsigned (*_cal_seg)() +134 2 entry call for tasks to call multiple-part

functions
<internal use> +136 2
unsigned (*_dcal_seg)() +138 2 entry call for drivers to call multiple-part

functions
<internal use> +140 2
<internal use> +142 2

... to be expanded in future

 - Application Programming Documentation

Page 54

3.18 Menu Reference
WiOS’ menus and icons have to be handled by each task itself. Yet, there’s no automatic
handling of mouse-clicks in defined areas, but WiOS offers helpful functions to get the most
of menus with an ease of usability.

There are two main functions you need to handle menus: ‘DRW_MENU’ to put the draw the
menu on the screen and ‘CHK_MENU’ to check whether specific coordinates are in one of
the defined points or not.

When talking about items in this section, a single menu point with a possible graphic icon is
meant.

NOTICE:
The function CHK_MENU returns the number of the item on which the coordinates (normally
the pointer) are, which are counted linear from the beginning of the menu-list. Each text-
entry, button, and box is one item. If the menu consists of a list with 5 entries and two options
(in this order), the latter entries will return the item numbers 5 and 6, if the coordinates of the
pointer are over them, since the first 5 entries have the numbers 0 to 4. A special type is the
scrollbar: it contains of 5 items in the following order:

arrow up/left / page up/left / slider / page down/right / arrow down/right

Depending on whether the scrollbar is vertical or horizontal. To get to know more exactly how
the items are evaluated, create a menu with different types in one list and print the return-
values of the CHK_MENU-function (with the mouse-coordinates the coordinate-agrument) on
the screen.

3.18.1 Menu types
The menu functions offer 5 different types of menus:
Option Text strings with an option box on the left.
Options are a block of one or more items where each item can be enabled or disabled
separately.
Radio Button Text strings with a radio button on the left.
Radio buttons are a block of one or more items where only one item can be enabled. If
another item in this block is selected, all other items will be disabled
List Plain text strings
Normally, lists are used for pull-down or pop-up menus
Scrollbar Graphical display of a given scale using a user defined scale with the
possibility to select a certain area in the given scale.
Box Rectangular area
Boxes are not visible on the screen. They can be used for checking any rectangular area,
e.g. for menus that cannot be handled with the above menu types.

The complete menu data of a window is normally placed in one big data block. Such a block
uses the basic idea of a macro language, but at a very low level, i.e. word-, byte- or bit-
mapped. The idea behind this is to have one structure where each item has its own number.
The coordinate checking has to be called only once to get the item number of the desired
coordinates, no matter if you have only a pull-down menu or a complex structure with many
options, radio buttons and scrollbars.

 - Application Programming Documentation

Page 55

3.18.2 Menu Features
Option / Radio Button Items can be printed in both directions, from top to bottom, and from
left to right. Independent from the direction will the coordinate checker validate coordinates
beginning from the left - at the icon - to the right end of the text of each separate item, i.e. if
you check an area right to the text, you will receive no item number.

When writing items in the destination from left to right, WiOS will calculate the width of the
longest string in the option / radio button block and use this as the standard distance between
each item. Although the distance is equal, the items begin with the icon and end with the right
end of the text of each item.

Disabled items will be printed in grey (instead of black)
Whenever a item is selected, it is up to the task to set (and for radio buttons: reset all other)
icon-enabled-bits.

Lists Items can only be printed from top to bottom. The coordinate checker calculates the
width of the longest string and will - in contrary to the option / radio button - use this width for
each item in the list block.

Disabled items: see option / radio button.

Items can have an arrow icon on the right border to indicate the existence of a sub-menu -
which must be opened as a new window by the task.

Scrollbar They can be adjusted in horizontal and vertical direction, and they are always
separate (no combination in one scrollbar block possible, but there can be more than one
scrollbar in a menu block!!!)

Disabled scrollbars will not have any visible difference in graphic - the task has to indicate
that separately on the screen.

The scale of the ‘virtual size’ (similar to windows), the size on the screen in pixels and the
size of the area represented by the slider (see ‘work-area’) can be chosen freely. Yet, there
are some problems drawing very small sliders.

Slider-handling, scrolling and page up/down must be completely processed by the task - the
step-size is not pre-defined. If the user clicks on the slider and drags it around, it is up to the
task to trace the mouse and show the slider on the screen. This might be fixed, if wanted.

Box It can be freely defined with a coordinate pair (upper-left / lower right)

 - Application Programming Documentation

Page 56

3.18.3 General conventions about menus
If items overlap, the checker will return the item number of the first valid area of the
coordinates. If they overlap, it will return, not as drawn on the screen, the number of the
‘lowest’ area (e.g. if two boxes intersect, the number of the box drawn first will be returned
although only the second box is visible since it has ‘overwritten’ the first box).

Every item can be disabled separately. Disabled items are still displayed on the screen but
are not checked by ‘CHK_MENU’. The item numbers of the following items stay the same, so
for example if you disable the first item of a list box (which has number ‘0’), you will not be
able to check it any more, but the second item still has the number ‘1’.

Border styles can be chosen for each item block except for the scrollbars. At the moment,
only two border styles are valid: no border and filled box border with standard background
color (which can not yet be altered). The border distance in pixels is doubled for x-direction
because in 512x212 resolution, a pixel is twice as high as it is wide.

 - Application Programming Documentation

Page 57

3.18.4 Menu-Block Structure
The menu block is one big field of data where one or more menu types can be defined.

The following symbols are used in the structure definition:
prefix
b Byte (1 byte)
w Word (2 bytes)
t Text (variable byte length)
definition of valid values for ‘D’ (see suffix)

suffix
N any number
D number from a pre-defined list
S and character string
0 must be this value

Valid border styles:
0 no drawn border
1 filled box with background color

Definition

bN number of item blocks

type
bD
#0 Option

Once for each option block:
wN font-handle
wN x-offset
wN y-offset
w0 width of option-block (filled by WiOS)
w0 height of option block (filled by WiOS)
bD border style
bN distance of border in pixels
bD Direction
#0 top to bottom
#1 left to right

For each entry:
bD Entry Flags (bitmapped)

bit reset (0) set (1)
entry status 0 end of list valid entry
valid 1 disabled enabled (selectable)
selection 2 not selected selected

3..7 unused (must be reset)
tS Null-Terminated String

continued at Entry Flags (until bit 0 is reset)

 - Application Programming Documentation

Page 58

#1 Radio

Once for each radio block:
wN font-handle
wN x-offset
wN y-offset
w0 width of option-block (filled by WiOS)
w0 height of option block (filled by WiOS)
bD border style
bN distance of border in pixels
bD Direction
#0 top to bottom
#1 left to right

For each entry:
bD Entry Flags (bitmapped)

bit reset (0) set (1)
entry status 0 end of list valid entry
valid 1 disabled enabled (selectable)
selection 2 not selected selected

3..7 unused (must be reset)
tS Null-Terminated String

continued at Entry Flags (until bit 0 is reset)

#2 List

Once for each list block
wN font-handle
wN x-offset
wN y-offset
w0 width of option-block (filled by WiOS)
w0 height of option block (filled by WiOS)
bD border style
bN distance of border in pixels

For each entry:
bD Entry Flags (bitmapped)

bit reset (0) set (1)
entry status 0 end of list valid entry
valid 1 disabled enabled (selectable)
sub list 2 no sub list sub list (arrow on the right)

3..7 unused (must be reset)
tS Null-Terminated String

continued at Entry Flags (until bit 0 is reset)

#3 Scrollbar

bD Entry Flags (bitmapped)
bit reset (0) set (1)

entry status 0 not valid valid

wN x-offset
wN y-offset
wN visible size of field in pixels
wN virtual size of field in pixels
wN real size of field in pixels
wN scroll offset of scrollbar in pixels
bD Direction
#0 top to bottom
#1 left to right

 - Application Programming Documentation

Page 59

#4 Box

bD Entry Flags (bitmapped)
bit reset (0) set (1)

entry status 0 not valid valid

wN x-offset
wN y-offset
wN width
wN height
bD border style
bN distance of border in pixels

If you miss any menu structure and think it would be worth implementing in WiOS, please let
me know of your concrete ideas.

 - Application Programming Documentation

Page 60

3.19 Programming Tips
It is not only of importance to know which functions do exist, but also in which order and,
that’s even more important, when they should be used. Although there are sample programs
in this documentation, you can look up the way how special things are managed in this
section.

For programming applications in a graphic-based multitasking system, you often need more
than just calling one function to do common procedures. This can not be derived from the
functions itself. You need to know how these procedures which can only be done with the co-
operation of two or more functions are handled.

During your first programs, it is advisable to use the structure in the sample-programs as-is,
no matter if you understand why it is done like this or not, since there are other things you
should focus on first - like working with the ASCII-C compiler or testing the graphic functions.
If you think you understand the basics of WiOS and want to do real applications (or if you just
want to know anything), go on reading.

 - Application Programming Documentation

Page 61

3.19.1 Windows
To put windows on screen, there are two major steps necessary. One step does the ‘virtual’
stuff for a window, that is the calculation and storing of the window in memory so WiOS is
able to handle all user-entries concerning the modification of the window using the mouse.
The second step is changing the window ‘physically’, i.e. draw and move the window on the
visible desktop.

3.19.1.1 Opening Windows
First of all, you can only draw windows in the event-handling routine - after polling. There is
no difference whether the user, your task or another task wants to redraw a window of a task.

User
After polling, the task receives an open-window-event whenever a window was dragged,
rescaled,... by the user. The task has to call the ‘OPEN_WIN’ function which adds the
redraw-event. After polling, the task receives this event and must redraw the window on the
screen.

Your Task
Creating a new window can be done with the ‘CREATE_WIN’ function of the window driver.
This will add your window to the window list and fills in some variables. To draw the window
on the screen, you have to arrange that you will receive a redraw-event after polling. This
event is sent by the ‘OPEN_WIN’ function. To get the complete data of the new window, call
‘GET_WIN_STATE’. This data can be sent to the ‘OPEN_WIN’ function, which adds the
redraw-event.
Moving an existing window is done as described in the steps before without the
‘CREATE_WIN’ function.

Other Tasks
Forcing other tasks to move their windows can be done exactly by sending them the open-
window-event - which is exactly the same way WiOS informs the tasks after the user has
moved a window. The corresponding task will then call the ‘OPEN_WIN’ function which
sends the redraw-event to itself, and after polling, it redraws its window.

Why sending the open-event, let the task call ‘OPEN_WIN’ before the redraw-event is sent?
Although there can already be given some restrictions for the user not to move or rescale the
window as he wants, it is of desirable to have more control over the window. The basic idea
behind this is to ‘ask’ the task before giving the command to redraw the window. The task
may then determine whether or not to accept the changes. These changes are sent by the
‘OPEN_WIN’ function. It’s up to the task to send the changes to the window driver and
update the window entry in the list or to reject these changes by ignoring this event.

Why cannot the task redraw the window directly after the open-event has been sent?
There is more than only one window on the screen. Changes on one window can affect the
others as well. These changes can not be predicted before the open-event sends the final
window-data to the ‘OPEN_WIN’ function. If a window is changed (i.e. moved, rescaled,...) on
the screen, other windows may be visible now. These windows also have to be redrawn. The
window-driver does not send extra open-events to the tasks of these windows, but only
redraw-events - since there is nothing changed with these windows. This requires a separate
redraw routine which must be independent of the open-routine.

Regarding these facts, a task using windows has to have the following routines:
� window-creation-routine for the ‘standard’ windows (called only at the beginning)
� window-redraw-routine (handles the redraw of the windows on screen)
� window-open-routine (checks window-parameters and calls ‘OPEN_WIN’)
� event-handling-routine (calls window-open- or window-redraw-routine)

 - Application Programming Documentation

Page 62

3.19.1.2 Redrawing Windows
The redraw-routine has to know a bit more than just the data in the window structure. This
data can be ordered by the window driver and is called the window-information-block (WIB).
It has the following structure:

T_SEG stackseg segment of the redraw-stack
unsigned elements number of rectangular areas in redraw-stack
struct WINSTR *windat pointer to window-data (outside page 1 or 2)

needed window-members are:
x,y
nx,ny
realx,realy

unsigned sx,sy start coordinates of window-copy (always 0,212)
unsigned offx,offyoffset for work-area
int moffx,moffy move-offset relative to last position
unsigned toffx,toffy title offset
unsigned t_nx,t_ny title width

The redraw stack has the following structure:

unsigned x1,y1 upper left coordinate (absolute)
unsigned x2,y2 lower right coordinate (absolute)

The task’s redraw-routine has to look like this:

- call ‘GETWIB’ and store return-address
- if elements is equal 0, nothing is to do
- draw your own data at coordinates (sx+offx , sy+offy) that come with the ‘GETWIB’
function
- call ‘COPYWIN’

For examples, look in chapter 3.22 - Sample Programs.

3.19.1.3 Scroll Requests
Whenever an ‘E_SCROLL’ event is sent to another task, must be taken care to send an
‘E_WOPEN’ event immediately afterwards!!! No polling should be done between the sending
of the two events!!!

If there are protests, I might change WiOS to send an open window request automatically if a
scroll event is sent.

 - Application Programming Documentation

Page 63

3.19.2 User Input
One (yet) weak point in WiOS is that there is no built-in routine which allows the user to edit
one or more characters. That has to be simulated by your program (i.e. you have to write
your own routine) until the routine will be present in a future version of WiOS.

Getting the next pressed key:
- call the external driver with function ‘GETKEY’

Wait for a current keypress:
- call ‘RESKEY’
- loop until ‘GETKEY’ returns not equal 0

Only ASCII codes will be returned. Yet, you cannot check whether any control key has been
pressed if there is no separate ASCII-code for the key with and without the control key (e.g.
SHIFT+’A’ returns a different code that ‘A’, but SHIFT+CURSOR returns the same code as
CURSOR only).

This might be fixed in a future version if there’s need for that.

3.19.3 Using the Temporary Segment
Whenever you need to store 16k or less data temporarily, for example for calculation purpose
or for data transfers, you may use the system’s temporary segment. Its number is in the GDA
(‘_tmp_seg’).

This segment is also used by the system as a temporary page (e.g. whenever data from disk
is loaded) and it might be used from other tasks. So do not store your data there for too long,
or it might be altered. If you want to use this page, be sure not to load from disk or poll - in
these cases, your data is lost for sure!!! Instead, you can allocate a segment temporarily and
free it later, if you need it to hold the data for several pollings (which is strongly
recommended, since frequent polling is an essential part of co-operative multitasking).

The temporary segment is always in the main-slot.

3.19.4 Mouse Pointer
The mouse pointer is moved in interrupt, so every 1/60 second, a function which reads the
new mouse coordinates and puts the pointer to the screen is called. The sprite data must be
written to VRAM, and therefore it is needed to set up the write address and send the
coordinates to the VRAM. From this fact arises the problem that there can’t be another
program which writes data linear to VRAM through P#0 or sets up a VDP command. Linear
data would be written to the correct place as long as the interrupt function is called, then any
other data would be written behind the sprite coordinates. If a VDP command is set up, the
register pointer would be changed to R#0 from the interrupt routine and all other register data
would be written to R#3 and up. One possibility is to disable the interrupts, but if there are
other tasks running in interrupt like a music replayer, they would halt as well.

This is handled with the variable ‘busyflag’, which can be found in the GDA as ‘_busyflag’.
Whenever this flag is set to a value not equal 0, the pointer update on the screen will not be
processed. If you want to perform a direct write to VRAM via P#0 or set up a graphic
command, set the busyflag, and if you finished, reset it. When writing a lot of linear data, you
could as well set up a graphic box and send the data through P#2 to prevent long phases
where she pointer does not move.

 - Application Programming Documentation

Page 64

3.19.5 Sending data to other program parts using the address block
Sometimes, it is necessary to send other programs more than just one or two arguments.
This works transparently with the ‘caldrv’ function, bus there are cases where the data must
be stored in a place which is not affected by segment switching by the programmer. One of
these cases is the calling of multi-part tasks. Since you know that it is taboo to write data in
the GDA or somewhere outside of a task’s own segments, there is a place where a task is
allowed to store data: this area is pointed to by the GDA variable ‘_adrblk’. This area has
place for 16 bytes which can be defined freely. This is not too much, but it is enough for most
cases.

Another use for the address block is to eliminate a weak point of C: the fact that only one
parameter can be returned. Sometimes, it is necessary to return more than one value. These
values could be stored in this area.

Remember that this is not a place to store data permanently since other tasks may use it as
well. So, similar to the temporary segment, store only very immediate data at this address, for
example if you call a function in another segment of a multi part application.

3.19.6 Stacks
Every task has its own stack-pointer inside the actual segment. Whenever a task is loaded,
this stack is set to the top of the 16k page (i.e. to 8000) Whenever calling WiOS-functions,
the is stored data on the stack - also whenever a task is called from WiOS. Since the code
size of every part in an application may vary, there’s no limitation or internal checking whether
the stack overwrites areas of the code. If you experience problems with applications which
code size is 15k or more, try to move some functions to a new part. Normally, this should not
happen, but if you nest 100 inter segment calls to multi part functions, your stack might come
dangerously near your program code.

3.19.7 Program Termination
For WiOS applications, it is important never to end a task by returning from the main function
which is called after loading. Also, you may never use the ‘exit()’ routine, CTRL+STOP or any
other DOS abort routine, since the memory pages are altered and WiOS’ interrupt driver is
still active. The task must be closed with the ‘KILLTASK’ function of the task driver. Since this
function does not work in this Alpha-Release, you should use the ‘ESC’ key which is scanned
at each polling. This routine shuts down WiOS, restores the original memory segments,
hooks out the interrupt driver and returns to DOS.

 - Application Programming Documentation

Page 65

3.20 Compilation
The creation of a WiOS task requires several steps, which differ slightly for single and multi
part applications.

First, a compilation batch file is needed (let’s call it ‘COMP.BAT’). If should basically contain
the following commands:

[drive\path\]cf %1 parse and create .TCO file
[drive\path\]fpc -u %1 check function parameters with functions in this file
[drive\path\]cg %2 %1 generate .MAC file from .TCO file
[drive\path\]m80 =%1/m generate .REL file from .MAC file
del %1.tco+%1.mac delete unnecessary files

The option ‘%2’ at ‘cg’ should normally be ‘-r2000’ to have enough space for functions. This
can be set permanently to this value so you don’t have to type it for each compile, but if
changes are needed, you have to edit it separately. For C files which require a special
pool:symbol:hash proportion for the parser and memory set-up (-rnnnn) for the code
generator it is advisable to create separate batch files for them (for example TASK1.BAT to
compile the file TASK1.C) where the ‘%n’ arguments can be replaced by concrete names
and options, so you have only to type ‘TASK1’ to compile TASK1.C.

For advanced C users, it is preferable to have two compilation batch files. If the code
generator wants a different ‘-rnnnn’ value, it is not needed to create the .TCO file again.
Therefore, here are my personal batch files:

COMP.BAT

cf -r7:5:2 %1
fpc -u %1
comp2 %1 %2

COMP2.BAT

cg -r2000 %2 %1
m80 =%1/m
del %1.tco+%1.mac

The first batch file is called with ‘COMP filename’ (without extension!!!) and creates only the
.TCO file and checks the function parameters. If no errors occur, it calls COMP2 with the
arguments from the command line.
In the second batch file, the code generator and assembler is called, and the non used files
are deleted.
The advantage of using two files is to be able to ‘continue’ the compilation process at the
code generation, since the parsing is not needed is the code generator has a memory error.
Also, you can override the ‘-r2000’ option by writing a second argument in the command line
like:

comp2 task1 -r1500

The code generator receives the line ‘comp2 -r2000 -r1500 task1’ and uses the later options
rather than preceding options.

 - Application Programming Documentation

Page 66

3.20.1 Single Part Applications (up to 16k code)
They consist (normally) of several C files. To link the .REL files, a line similar to the following
is needed:

c:\c\l80 /p:3ff6,taskhead,task1a,task1b,task1c,task1d,...,gda,c:clib/s,
c:crun/s,c:cend,task/n/e

This creates a single .COM file with about 16k of zeroes and the code beginning at 3ff6h - so
that the real application (without the file-header) starts at 4000h.

Then MAKDRV must be called to cut the preceding 16k and to fill the correct values in the
header like:

makdrv task.com task.tsk

This creates the WiOS-executable file TASK.TSK. Its file size should be smaller than 16k. If
the .COM file has more than >16k of code (i.e. is larger than 32k), MAKDRV will not proceed.

After the task is created, the .COM file is no longer needed and may be deleted.

To make things easier, this process should also be done in a batch job. For that purpose,
let’s suppose the task file shall be called TASK.TSK, the main source code TASK.C and the
standard header file TASKHEAD.MAC. Then a file called LT.BAT (which means Link Task)
has to be written:

LT.BAT

c:\c\l80 /p:3ff6,%1head,%1,%2,%3,%4,%5,%6,%7,%8,%9,gda,c:clib/s,
c:crun/s,c:cend, %1/n/e
makdrv %1.com %1.tsk
del %1.com

If TASK.C is the only file needed for the task, just write

LT TASK

to link TASKHEAD and TASK, create the .TSK file and remove the .COM file. If you have
another part called ‘TASKB.C’ which has to be linked, just add ‘TASKB’ at the end, as well as
up to 9 other parts. If you have more parts, it’s advisable to write an extra batch file for the
linking process.

The creation of your task is then simply done with two commands:

COMP TASK
LT TASK

If no errors occurred, start WiOS (W.COM) and watch what your program does.

 - Application Programming Documentation

Page 67

3.20.2 Multi Part Applications (more than 16k of code)
The first part (with the init routine) is created in exactly the same way as a single part
application until the .COM file is done. Every part (normally) also consists of several C files.

All the following code parts are compiled with the same steps mentioned above - completely
independent of the other parts- but they differ in the way they are linked. They do not have
the standard header file for tasks, since it is only needed at the beginning of the .TSK file.
Their link line looks like this:

c:\c\l80 /p:3ffe,etskhead,task2a,task2b,task2c,task2d,..,gda, c:clib/s,
c:crun/s,c:cend, task2/n/e

For a multi part application, you should have two or more .COM files.

The .COM files of multi part applications should never be deleted, although they use a lot of
disk space, because they are always needed to create the .TSK file. This is done by:

makdrv task.com task2.com task3.com ... task.tsk

Write as many parts as you want into this line and the name of the .TSK file at the end.

One problem is, of course, the limited size of the command line, but if there’s really
somebody writing such a huge application that suitable filenames (1.com, 2.com, 3.com,...)
do not fit into the line, I promise to write an extended MAKDRV program ;-)

For this kind of task, it’s also easier to have some batch files for compilation. For that
purpose, let’s suppose the task file shall be called TASK.TSK, the main source code TASK.C
and TASKB.C (for part 1) and TASK2.C and TASK2B.C (for part 2), the standard header file
TASKHEAD.MAC and the extended header file ETSKHEAD.MAC. Then a file called
LT1.BAT to link the first part has to be written:

LT1.BAT

c:\c\l80 /p:3ff6,%1head,%1,%2,%3,%4,%5,%6,%7,%8,%9,gda,c:clib/s,
c:crun/s,c:cend, %1/n/e

This batch file is the same as LT.BAT without the calling of MAKDRV and without deleting the
.COM file, which is needed for later creation of the task.

LT TASK TASKB

links TASKHEAD, TASK and TASKB, assuming you already compiled TASK and TASKB
with the COMP batch file.

To create the other parts, you need another batch file because the header file is different. So
create a file called LT2.BAT which is used to link all other parts.

LT2.BAT

c:\c\l80 /p:3ffe,e%1head,%2,%3,%4,%5,%6,%7,%8,%9,gda,c:clib/s,c:crun/s,
c:cend, %2/n/e

To link the sample files TASK2, TASK2B and ETSKHEAD, type

LT2 TSK TASK2 TASK2B

Now if you have the .COM files, if could be handy to write a new batch file to create the task.
This file, called MAKETASK.BAT could look like:

MAKETASK.BAT
makdrv task.com task2.com task.tsk

 - Application Programming Documentation

Page 68

3.21 Task Specifications
Multi part tasks do - regarding the fact that each part consists of a .COM file - not know
anything of each other since they have all been compiled and linked separately. The
‘interface’ between them is the address table at the beginning of the page (about 4000h) and
the WiOS functions which offer the possibility of transporting data and jumping and returning
to and from the multi part segments. Therefore, when planning applications, you should take
care of writing functions that have to call each other very often or use the same ‘internal’ data
(i.e. in the task segment from 4000h to 7fffh) in one part - if possible - since every function
which has to be called from outside must be declared in the address table. The best
(theoretical) way is to write each function-complex which calculates a lot of stuff or does
something special in an own part and have only one address in the address table - well, this
is theoretical, but what I want to make clear is that it would be stupid to write all little functions
which are called frequently in another segment since it would become very unhandy to call
them via their address table entry and to access data not using the C variables but sending it
with the address block or accessing them by a fixed address in the data segment. Anyway,
any way is possible, and it’s up to you to decide which one is best for you.

Important!!! The first part or a multi part application does not have a standardized
address table. If other parts want to call a function in the first part, you have to set up an own
address table in this part and give this address to the ‘cal_seg’ function. This address table
may be anywhere at address 4008h to 7fffh and may be included in the standard header file
as it’s done in the extended header file.

3.21.1 Headers
A task’s ‘standard’ header must have a list of information about the task. Every task must
have this header. For multi part applications, the first part contains the header.

An ‘extended’ header is only for extended parts, i.e. part 2 and higher of a multi part task.

The headers are .MAC files to warrant the correct order of variable and pointer positions.

All names with a ‘@’ are declared public and can be accessed as a normal variable in the C
code. Labels which are not pointed to in a ‘ds’ or ‘dw’ instruction in another line can be left
out. They are just here to make clear what this line defines.

Header files must be assembled with

M80 =filename/m

to create a linkable .REL file.

You can set the number of needed segments in the header file, so it is guaranteed that if your
task runs, it will have enough segments, or else WiOS does not load it. The number of
needed segments must be at least as big as the number of program parts because each part
needs one segment. But this number can also be larger if a task needs more segments to
store data permanently. You can add the number of segments to the number written in
‘PPARTS’ and write the result at the constant ‘NEEDSEGS’.
Remember that this is only for the number of segments which are needed permanently to run
the task. Theoretically, you can temporary allocate all available memory later if needed to
speed some things up or to store huge picture data.

 - Application Programming Documentation

Page 69

3.21.2 Standard Header Structure
normally, you only need to change these two lines (and the task name)!!!
NEEDSEGS equ 1 minimum number of segments needed for

this task (incl. data segments)
PPARTS equ 1 program parts (for multiple part tasks)

external header
WiOS_ver: dw 0 WiOS version needed to run driver
segs: dw NEEDSEGS needed segments to load driver
p_parts: dw PPARTS number of program-parts in file
t_main: dw taskinit@ task's start-address

lastadr: dw @endx@-4000h len-info for loader, filled by L80

internal header (4000h)
tsknam@: dw taskname pointer to task's name
p_stable: dw segtable@ pointer to segment-numbers
stack: dw taskmain@ Internal Stack Pointer of task

(must point to function taskmain in file!!!)
usedsegs: ds 2 total number of used segs (filled by WiOS)

variable part (4008h)
segtable@: ds NEEDSEGS*2 space for segment numbering during

allocation (filled by WiOS)
taskname: dw 0 task’s version

db "Test-Task" Task's name
db 0 taskname termination

public tsknam@
public segtable@
extrn taskmain@
extrn taskinit@
extrn @endx@

end

3.21.3 Extended Header Structure
external header
lastadr: dw @endx@-4000h len-info for loader, filled by L80

internal header (4000h)
mp@seg@: dw 0 segment of 1st part with all task-infos

(filled by WiOS)
my@seg@: dw 0 segment of this part (filled by WiOS)
stack: dw 0 Internal Stack Pointer of task (filled by

WiOS)

variable part (4006h)
func_1: dw test1@ address of routine ‘test1’ (4006)
func_2: dw test2@ address of routine ‘test2’ (4008)
func_3: dw test3@ address of routine ‘test3’ (400a)
.
.
.

extrn test@

public mp@seg@,my@seg@
extrn @endx@

end

 - Application Programming Documentation

Page 70

3.22 Sample Programs
On the next three pages, you’ll find a little example of a complete Desktop Publishing
package including printer driver...

Well, not exactly, this section is more a reference for inexperienced WiOS programmers who
just want to look how common routines are used and a look-up possibility for not-yet-C-
programmers :-)

More examples can be found in the Application Creation Toolkit and, if there’s demand, in a
separate printed sheet.

What is essential for an application?

3.22.1 Pre-processor Directives
To get the optimum performance with the C compiler, the following lines should be on the top
of each C file:
#pragma optimize time which has, as far as I know, no effect on the code
#pragma regalo to enable register allocation, if possible
#pragma nonrec not to store all variables for every function.

If a function is recursive, you may write the same line and replace ‘nonrec’ by ‘recursive’
immediately before the function and add the line with ‘nonrec’ again after it.

Although this is the theoretical optimum, it’s often better to disable register allocation so the
code generator does not try to optimize the code. The program runs slightly slower and uses
a few bytes more, but the compilation process will be up to twice as fast without optimization.
As practice shows, a program has to be started several hundred or thousand times before
the programmer thinks that it works without bugs. During this development phase, you can
save a lot of time without optimization, and when the program works perfectly, it can be
enabled in all source files for the final compilation to create an optimized code.

These lines are more likely for the real programmer:

#pragma optimize time
#pragma noregalo
#pragma nonrec

3.22.2 Header Files
The following header files are essential to write tasks in C:

#include <stdio.h>
#include "def.h"
#include "gda.h"

and one or more of the following are optional:

#include "eventfnc.h" events
#include "defstr.h" structures
#include "winfnc.h" ... see chapter 3.14 - Function Reference (WiOS Drivers)
#include "taskfnc.h"
#include "stdfnc.h"
#include "memfnc.h"
#include "grpfnc.h"
#include "giofnc.h"
#include "fsfnc.h"
#include "extfnc.h"

 - Application Programming Documentation

Page 71

3.22.3 External Variables
There are variables defined by you (task’s name) and WiOS (segment numbers) in the
header file of each task. If you want to have access to them, they should be declared in the C
file:

extern char *tsknam;
extern unsigned segtable[0];

The number in brackets can be set freely, since C does no boundary checking either. This
just means that the variable ‘segtable’ is an indexed 16-bit variable.

With the variable ‘segtable’ you know where your task, all the other parts and the data
segments are. To get the number of the first non-code segment, just use the number of parts
of your task as the index. For example if you have a multi part task with 2 parts, the index 0
and 1 is used for the code segments and the index 2 and higher contains the numbers of the
data segments.

When writing the task’s name, remember to add 2 to the pointer, since the first two bytes of
the task name contain the version number of the task.

3.22.4 Task Initialization
Whenever a task is loaded, WiOS calls the address pointed to by ‘stack’ in the first part of the
task (see chapter 3.21.2 - Standard Header Structure). This can be used for task
initialization, for example to check whether another instance of this task is already running or
to check the presence of required drivers and, if necessary, to load them.

Important!!! This routine is not the real start of the task. It may not call the poll routine nor
does any event have to be checked nor should windows be opened. Normally the init
sequence is only for checking if the task finds everything which is required to run. This
routine may return immediately without doing anything! The task ‘officially’ starts at the
address pointed to by ‘t_main’. The handle of the task is passed as an argument of type char.
This value may be either ignored or saved (to prevent a ‘search for name’-call later to
determine the handle of the task).

VOID taskinit(handle) char handle;
{

printf("task init-routine: task has handle %d\n",(int)handle);
}

This function is necessary, but it’s not necessary for the function to do something.

3.22.5 Main Routine
This is the function where the task begins. The function should never return. If you want to
stop the task, use the ‘KILLTASK’ function of the task driver. For the Alpha-Release, see
chapter 3.19.7 - Program Termination. This address is pointed to by ‘t_main’ in the standard
header file.

VOID taskmain()
{

printf("task has started!!!\n");

...create_and_open_windows...

...poll...

...do_something...

...format_harddisk...

...print_virus_message...
}

It’s up to your imagination to create a usable program. This is the function which has to set
up anything which can be seen on the screen, handle user events, doing anything - the
‘main()’ function from ‘normal’ C.

 - Application Programming Documentation

Page 72

3.22.6 Window Creation
Before you can see anything on the screen and let WiOS do all the work with user, you have
to set up proper window data.

For this, and also for some functions later in the redraw and open section, the ‘windat’
variable should point to the task’s own window block which is used to create and change
windows, so somewhere in the C file, there should be a line like:

struct WINSTR windat;

Here comes an example of a perfect set-up of a window (so at least I can say one thing is
perfect with WiOS ;)

VOID creatwin()
{
int whandle,i;

windat.x=50;
windat.y=60;
windat.nx=100; /* work-area size */
windat.ny=75;
windat.vx=100*2; /* virtual size (twice as much as work-area)*/
windat.vy=75*2;
windat.scrx=100/2; /* scroll offset (to the middle) */
windat.scry=75/2;
windat.minx=0; /* no minimum limit */
windat.miny=0;
windat.maxx=0; /* maximum size is virtual size or screen */
windat.maxy=0; /* size */
windat.behind=-1; /* open window on top */
windat.winflag=0; /* hmmm, see in the referring chapter */
windat.iconflag=127; /* allow all icons */
windat.workflag=32+8+4+2; /* allow all clicks */
windat.parent=-1; /* window has no parent -> it is parent */
windat.statflag=0; /* ... */

for (i=0; i<25; i++) windat.dummy[i]=0; /* reset dummies */

whandle=windat.handle=(*_caldrv)(*_hwindrv,CREATE_WIN,&windat);
printf("created window has handle %d\n",windat.handle);
(*_caldrv)(*_hwindrv,GET_WIN_STATE,&windat); /* get win data */
(*_caldrv)(*_hwindrv,OPEN_WIN,&windat);/* send data for opening

the window */
}

There should not be any problems in understanding the code. One important thing is that
‘whandle’ should be stores in a global variable because it is the only point where the task gets
to know the handle of the created window. This is important to redraw the correct window if a
redraw request is sent. The ‘GET_WIN_STATE’ function before opening the window is
necessary because WiOS filled some variables to the window structure like the window’s
task and the real window size including the icon frame.

 - Application Programming Documentation

Page 73

3.22.7 Polling and Event Handling
Here’s an example of what should an event handling routine be capable to deal with. We use
the simplest type of main loop:

VOID taskmain()
{
struct EBSTR *block;
.
.
.

while (1)
{

/* poll and return address of block */
/* allow all events */

block=(struct EBSTR *)(*_poll)(0);
/* process the event */

procevent(block);
}

}

or the last two lines of code (for C cracks) so ‘block’ is not needed at all:

procevent((struct EBSTR *)(*_poll)(0));

For the description of the event block, see chapter 3.15 - Event Reference.
The function ‘procevent’ should then handle all the necessary events and could look like:

VOID procevent(block)
struct EBSTR *block;
{
char c;

printf("processing event %d\n",block->event);
switch(block->event)
{

case E_NULL:
printf("receiving the NULL-event...");
break;

case E_REDRAW:
printf("REDRAW event for window %d received\n",

block->array[0]);
redraw(block);
break;

case E_SCROLL:
printf("SCROLL event for window %d received\n",

block->array[0]);
wscroll(block);
break;

case E_WOPEN:
printf("OPEN event for window %d received\n",

block->array[0]);
wopen(block);
break;

case E_WCLOSE:
printf("CLOSE event for window %d received\n",

block->array[0]);
(*_caldrv)(*_hwindrv,CLOSE_WIN,block->array[0]);
break;

case E_PNTOUT:
printf("pointer has left window %d\n",

block->array[0]);
break;

case E_PNTIN:
printf("pointer has entered window %d\n",

block->array[0]);
break;

 - Application Programming Documentation

Page 74

case E_MCLICK:
printf("CLICK whandle=%d coord=%d,%d click-type:%d time=%d\n",

block->array[0],block->array[1],block->array[2],
block->array[3],block->array[4]);

break;

case E_WKAREA:
printf("pointer is over work-area of window %d\n",

block->array[0]);
break;

case E_EDRAG:
nosend();

break;

default:
printf("Event Handler was called with an unknown event\n");
break;

}
}

The example requires the existence of the functions ‘redraw’, ‘wscroll’ and ‘wopen’.

The ‘redraw’ function redraws the window physically on the screen. The following example
simply would draw a white box in the work-area, assuming we have a box-draw routine to
draw a box with the arguments (x,y,nx,ny,colour).

VOID redraw(block)
struct EBSTR *block;
{
struct WIBSTR *wib;

wib=(struct WIBSTR *)(*_caldrv)(*_hwindrv,GETWIB,
block->array[0]);

_box(wib->sx + wib->offx , wib->sy + wib->offy ,
wib->windat->nx , wib->windat->ny ,
32767);

if (wib->elements) (*_caldrv)(*_hwindrv,COPYWIN,wib);
}

After GETWIB was called, the window frame exists at the coordinates returned with the
members ‘sx’ and ‘sy’ and the window data is copied to the global area (i.e. outside of page 1
and 2) pointed to by the member ‘windat’. If the window is visible (it normally should... but the
window driver is not fully optimized for that), it is copied from the hidden area to the screen.

The ‘wscroll’ routine simply has to determine whether the scrolling performed by the user (or
requested by another task) is valid and confirm it by updating the scroll-offset of the window,
poll again to receive the ‘E_WOPEN’ event and return to the normal task to poll (so the
‘E_REDRAW’ event can be sent). Since this routine also has to handle the open event, I use
one common function for the scroll and for the open event. This function is called
‘do_wopen’:

VOID do_wopen(block)
struct EBSTR *block;
{

windat.behind=block->array[1]; /* set up the window according */
windat.x=block->array[2]; /* to the block
windat.y=block->array[3];
windat.nx=block->array[4];
windat.ny=block->array[5];

/* send data for opening the window and
creation of REDRAW-events */

(*_caldrv)(*_hwindrv,OPEN_WIN,&windat);
}

The ‘OPEN_WIN’ function changes the window in the memory list and sends the redraw
event to the task (besides, it does more, like rearranging pane windows and all other
windows which might be visible now, and sends a lot of open window requests, and... but this
is not important for your task - just for the ones who want to know why to call this ‘stupid’
function first instead of just drawing all the window stuff right now on the screen ;)

 - Application Programming Documentation

Page 75

 Now for the function:

VOID wscroll(block)
struct EBSTR *block;
{

windat.handle=block->array[0];
/* get window data */

(*_caldrv)(*_hwindrv,GET_WIN_STATE,&windat);
windat.scrx=block->array[1];
windat.scry=block->array[2];

/* do one more possing to receive
the window-open request and
send the data to do_wopen */

do_wopen((struct EBSTR *)(*_poll)(0));
}

Although it looks a bit dirty because there is no event-checking done after the poll routine, it is
correct. Every window scroll request from WiOS is followed by a ‘E_WOPEN’ event. If a task
sends a scroll request to another window, is must also send an open window request
immediately afterwards.

The event-handling is almost complete now:

VOID wopen(block)
struct EBSTR *block;
{

windat.handle=block->array[0];
(*_caldrv)(*_hwindrv,GET_WIN_STATE,&windat); /* get win data */
do_wopen(block);

}

This function gets a copy of the window data in the task’s own window block since to be able
to change the size without setting up the data of the whole window itself.

 - Application Programming Documentation

Page 76

3.23 Security
Once a task has been created with 'MAKDRV' it should not be changed via a disk-editor. To
protect tasks against changes (or viruses ;-))), they contain a checksum which is checked by
WiOS before executing the task. If the checksum is incorrect, the task will not be started. Yet
there is no info-window for that. This checksumming is not a protection against hard-core
crackers, nor is it a guarantee for the task being unaltered! It is some kind of ‘guarantee’ that
if the task starts, it will be the same version the programmer compiled, and there will not be
any bugs due to disk errors or bad modem lines.

3.24 Starting Tasks with the Alpha-Release
Whenever WiOS is loaded, two tasks are loaded and started. They must be named

TASK.TSK and
TSK2.TSK

If these files are not present, WiOS will not start correctly. For Alpha-Testing, one file
contains the normal code, and one file contains the code to send data or files, just as WiOS’
file manager will do in future. Of course, if you don’t need to send any data, you can also
create a dummy task which does nothing or even start the same task twice by just copying
TASK.TSK to TSK2.TSK ;)

 - Application Programming Documentation

Page 77

3.25 Problems, Bugs and Other Unwelcome Stuff
WiOS is not completely finished. It contains - I hope - the most necessary functions to create
a wide variety of applications. This is important for debugging it. Besides the removing of
bugs, there are other standard functions to be made in the next weeks and months. They are
important for the public release, but not for testing the stability and suitability in making and
running applications. The following problems are often only a

3.25.1 Known Problems
Scrollbars

Since slider in a scrollbars (both, in windows and menus) are dynamic (i.e. their size changes
because it represents the proportion of the visible area to the virtual area), they have to be
calculated in a special way. For this calculation, the double number of bits of the largest
possible virtual size should be used (which is 16 bits). Therefore, long integer handling
should be used. This is, of course, not a problem, but since ASCII-C does not support values
>16 bit and I did not yet implement the routines of long integer handling, there might be
wrong sliders with virtual sizes >8 bit (i.e. 256). This is already a problem when displaying full-
screen windows (whose width are >256). But don’t panic ;) It will be fixed!!!

3.25.2 Planned Extensions
Sending data to other tasks

To let the user drag data, it will be possible in future to call a WiOS function which drags a
user defined graphic icon over the desktop. This routine is fed with the same arguments as
an ‘E_EDRAG’ event. The only difference is that the user may decide which task will receive
the data. When the mouse button is released, the ‘E_EDRAG’ event is sent to the task
belonging to the window where it was released and the sending task will return the handles of
the task and the window. During this user drag, multitasking is paused.

This is especially for dragging files from the file manager to tasks, since it is desired that no
task has its own disk menu. With WiOS, it is planned to make this as the standard way to
open files.

Font Handling

WiOS’ font manager has a lot of restrictions. The fonts can not be outlines, written in italics,
their height is limited to 16 pixels, and if the VRAM is full, no more fonts can be added. Also
the switching between fonts is quite slow (relatively...), because for every change, the status-
data is read from VRAM. This slows down some functions significantly, especially if several
menus with different fonts are open.

If there is nobody who can support me with concrete ideas of how to make a senseful font
handling, it is at least planned to speed up the procedure of changing fonts by placing the
significant data which has to be read from VRAM normally into RAM, so only a pointer to the
data has to be changed.

Right Mouse Button

When clicking at windows with the right mouse button, they will not be placed in front, but
stay at their present level (in future). Also when clicking on a standard window slider (to
adjust the scroll offset) with the right button, it will be possible to adjust it in both directions,
horizontally and vertically.

 - Application Programming Documentation

Page 78

4 FAQ - Frequently Asked Questions
Is WiOS fixed to 512x212 resolution with 32768 colors?
Yes, although no mode-checking is done. It is possible to change to another screen-mode.
But before doing so, you should tell WiOS to save the environment (i.e. icons and fonts
stored in the VRAM) and after you’re finished, take action to redraw the complete desktop.
WiOS does not prevent programs from doing ‘dirty’ graphic-tricks, but the results are
unpredictable.

Is it possible to use more ram than available (i.e. virtual memory storage)?
No, WiOS does NOT support scratch files on harddisk. If you want to swap unused memory
to disk, feel free to do it, but the system is not supporting this automatically.

Will my slow mouse ever work correct in turbo mode?
Yes, but until now, this bug had a very low priority. It will be fixed (latest!) with the Zandvoort
‘97 version which comes with the file-manager.

Does WiOS support any printers?
That depends on the ideas of the programmers who think of being capable to write a printer
driver. If somebody feels like doing it, I can support him with some dithering algorithms
(sources!). Still there is no way to use a mix of bitmap and vector graphics in WiOS, but at
the moment, printing images is not the most important task.

Well, it’s up to you to fill up this page by asking me frequent questions (that does not mean
that you ask me the same question frequently, but if you want an important question to be
answered here, you could ask your friends to ask me the same question so I will be thinking
that it is a frequent question :) just kidding...

 - Application Programming Documentation

Page 79

5 Keyword Description
address block 16 byte area which stays untouched from segment switching. It can be used
to store immediate data which has to be sent to other program parts. The GDA variable
‘_adrblk’ points to its address.
Application = Task
GDA Global Data Area - the area where global variables and function addresses which
should be able to be accessed by other programs are pointed to.
Task = Application
WIB Window Information Block - a data structure defined as WIBSTR
window block The complete structure of a window which is defined as WINSTR. This block
must be set up to use the window functions.

This is your page, write me anything you want to know and fill it in here :-)

 - Application Programming Documentation

Page 80

6 Last But Not Least
If you encounter any problems, either with WiOS, the Application Creation Toolkit or with this
manual, please send a message to:

Michael Stellmann
Geleenerstr. 14
71034 Böblingen
Germany
E-Mail: mstellmann@msx.ch

Sunrise for MSX
Rob Hiep
Postbus 61054
NL-2506 AB Den Haag
Netherlands
E-Mail: rhiep@msx.ch

or

Sunrise for MSX
Peter Burkhard
Moosmatten 1
CH-9244 Niederuzwil
Switzerland
E-Mail: pburkhard@msx.ch

Our Homepage
http://www.msx.ch
E-mails are the preferable way to communicate since it is faster and cheaper than snail-mail.

If something works wrong with WiOS, please write some words about the error and, if
possible, send the source-code including the compiled version of your task or driver (i.e. your
own ‘.C’, ‘.H’ and ‘.TSK’ or ‘.DRV’ files), so I can try to fix the problem as soon as possible.

If you find errors in the documentation, write where the error is or for which topic you want to
receive more detailed information, so I can add or change this section.

