- TeddyWareZ -

1.

2,

3.

INTRODUCGTIONeiiiiiiceierssssrerssssseesssssesssssssresssssssesassssesssssssesssssnsessassssessnssnsesssssnsenssssnnensass 2
PRt P - T 1 ORI 2
1.2, ALITTLE BIT HISTORY ..uttttieiiutiteeiiutteeeateeeeesuteeeesstteeesamtaeeesasteeeesanseeaeaanteeeesasseeeesnsseeeesansenansns 2
1.3, WHY CHAOS ASSEMBLER 37 ...eiiiiutiieeittieeeateteeeestteeeesteee e s smteeeeeasteeeeesnteeeesanteeeesasseeeesareeeeeaas 3
T.4. DISCLAIMERcii ittt etttee e e ettee e e ettt e e aa b e eee e ebe e e e e sateee e e aateeeeeseeeeeeasteeeeasteeeesnbeeeeesnseeeeanbeeeennns 3

OVERVIEW........eiiiiiiiiiere s s s s s s s a s s s s s s m e e e e s sam e e e e m e e e e amn e e e mn e e e a s annnas 4
2.1. IDE, WRAPPER, COMPILER, HELP!ocoiiiiiiie e 4
A |V 1 N 1 = SR RR 4

2.2.7. TRE MAIN WINQOW...........cooiiiiiiieeee ettt 4

2.2.2. TRE €A CHIlQ ...t 5

USING CHAOS ASSEMBLER 3........oooiceieircrrerssnnresssssesssssss s e sssssse s ssssssesssssnsesssssssessnsssnensnns 7
R T R S e N Y o2 LSRR 7
3.2, THE SETTINGS SCREEN.......uttiiiiitiiieeitteeeeeteteeeatteeeeanteeeeaasteeaeaanteeeeasbeeesannaeeeeanteeaesaneeaeennes 7

.29, TN GEONGIAL. ... 7

N C 1= 11T = I - T o 7

3.2.3. ASSEMBIEI 1A ... 9

N B o 1 (o) gl - o SRS 9

3.2.5. Default REAAET £ADc...eeeeeeeee e 11

3.2.6. COdE TEMPIALES TADoveeeeeeeeeeeee ettt e e e e e aaa e e e 11
3.3, IMAIN WINDOW. .. .eiteeiteeeeeeetteeeeetteeesesteeeesssteeeessntaaeeaassaeeeasseeaesasseeeeaassasesansseeeesasseaessnssenasns 12

3.3.7. MaIN MENU ...ttt 12

3.3.2. TOOIDAIS ...ttt 23
i, PROUECTS cetttieiittiteeiitttte e etete e e e bt te e e attee e e aate e e e e ste e e e e ambeeaeaanbeeeeabeeeeeeaneeeeeanbeeeeanreeeeeanreeaeeans 25

341, WRALIS @ PrOJECT? ...ttt 25

3.4.2. CAB AN PIrOJECES ...ttt 25

3.4.3. TRE ProjECt MANAQEL ..ottt nreea e 26
3.5. COMPILING FILES AND BUILDING PROUJECTSciiitieieeeitieeaeintteeessreeeeesneeeeessnseeeessseeesssnseeeeans 28

0 2o B B o 1= N oo g o= o) SRS 28

3.5.2. COMPUIING FIlES ..ottt ettt e ettt e e e e e e s aaaaaeeaaas 28

I TG R =171 Lo [To I o 0] 1= oz £ 29
R G b 1 2N TR SRPSURST 31

3.6.7. THE IMAQE VIEWEN ...ttt s snnsssssnsnnnnnnnsnnnnns 31

3.6.2. THE PAIETEE ©AION ...t nnnsnnnnnnns 33

0 R T B o 1= Yo 1 (=3 =o [o] SR 34
3.7. EDITING SOURCES......utiiiiitiieeeittteeeaitteeeeattteeeantaeeaeabeeeeaaabeeeeaasteeaeeasseeeeaanteeeeaaseeeeesnseeeaeans 36

370, MACROI'S.ASM 2 ...ttt e et e ettt e e e st e e e e sataaaenarenae e 36

3.7.2. COAE COMPIELION. ...t e e e e e e e e 36

B B S T 070 o (=8 0T I 1] o X< SR 37

RO S @ 14 1= g (o To] I 1] o X< SRS 37

3.7.5. Math @ValUGLIONoeeieeeiieeeeee e 39

- Chaos Assembler 3 Help File -

B.7.6. INQENEIAI ... 40

T © 8 I o | = 43
N = o 1 =0 == o T 1 [N S 43
4.2. THE TEDDYWAREZ RECOVERY SYSTEM...ciiiiiutuiieiaaaaaaauteneeeeaasaaaanneseeeaeeeaaaansnneeeaaesaaannnnees 43
T B0 o |1 T U 44
N o (0 1V o PSR 45
4.5, KEY COMBINATIONS ...cciiutttteeiutettesatteeesautteeeaansteeesassaeeeaansteeeaansseeesansseaeaanseeeeaanseeeeannseeessnnees 45
4.8, SUPPORT ..citttiteeitttteeeatteee e aut et e e s te et e e e s neeeee s nebee e e neeeeeannbeee e e R beee e e R aee e e e nbeeeeeanteeeeeanreeeeanees 47
5. ZBO INFORMATION.o iiiccmr e ms e ms e e e e s am e e e e e s e e s amnmn e e e e ea e nnnmnnns 48
5.1, INSTRUCTION SET ..ettiiuttieeeiuttteeaauteeeeauteeeesntaaeaesaseeeasasseeesansseeaeasteeesansseeesansseeeennsseeesannneens 48
5.2, INSTRUCTION TIMINGS ...cetteeiaiiuuennieaaaaaaaaateeeeeaaaeaaanneeeeeaaaeaaaansnseeeaaaeeaaaansneeeeeeeasaannnnneeaeens 50
5.3, COMPLETE OPCODE LIST ctiittiiiutttetetaaeaaaauteneaeaaaaaaaaneeeeeaaaeaaaanssseeeeaeaeaaansnseeeaaaeeaaanneneeeeeens 54
6. TASM DOCUMENTATIONcoiiiiirriicre s rmr s smr s sme e s e s s 70
L g N =T 1 1 1 S 70
6.2, TABLE OF CONTENTS -..ttitttaaeeaiateeeteeaaeaaaaunteeeeaaaeeaaaanneeeeeaaaeeaansseeeeeaaaeaaannennneaaeeeeaaansnnneeeaens 70
L0 T | N 1 18 [0 1 N 70

L] N o SR 71
LSS T | N1V o T 7.y N RS 71
6.6. ENVIRONMENT VARIABLES.ceiiiiuttiteauteeeesauteeaesaueeeesssseeeesasseeasassseesasseeseansseeessnsseeesannsnes 74

L N = (i O o] == RS 75
6.8, SOURCE FILE FORMAT.....ceeiittttteitteteeaaeeeeesassaeasateeeeesnsseeaeaanseeesansseeesansseeasansseeesansseeesansneens 75

L T = (=81 (@] SRS 76
6.10. ASSEMBLER DIRECTIVESciiiiititiiiiaae i e aiiieeeea e e e e e e aseeeeeeaeeeaansnaeeeeaeeeaaaneneeeeaaaeeeaannnnneeeeens 77
6.11. OBUJECT FILE FORMATS ..tttetitiauueteteaaaaaaaaaueeeeaaaaaaaanneeeeeaeaeaaaansnseeeaaaeeaaaansneeeeaeaeaaannnnneeeeens 84
B.12. LISTING FILE FORMAT -..cttttteeeeeaiteteeeeaaaaaaanteeeeaaeeeaaaanmeeeeeaaaeeaansseeeeeaeaeaaannsnseeeeeeeeaaannenneeeaens 86
6.13. PROM PROGRAMMING....c.ceetttiutttitetaaasaaaateeeeeaaeeaaaaneeeeaaaaeeaaansseeeeeaaeeaaansnseeeaaaeeaaansnnneeeeens 86
6.14. ERROR MESSAGESeiiiiiiiaiiiiteteiitaaaaaaaaeeeeeaaeeaaannaeeeeaaeeaaaansnaeeeaaeaeeaaseneeeeaaeaaaannnnnneeeeens 87
Lt T T I 1V 1 17y B N S 89

Page 1

- TeddyWareZ -

1. Introduction

1.1. About

Welcome to Chaos Assembler 3... We hope you'll have a great time using it and we did our best to make the
program usage as easy as possible... Also we tried to keep this documentation as small as possible...
Nevertheless you'll have to sit down for a while, read this docs, set your preferences and get used to the
interface of Chaos Assembler 3. This process will not take too long, but you'll be astonished about what this
program has to offer comparing it to other assembler IDE's (some well known are of course WBASS and
COMPASS). Chaos Assembler of course has one big disadvantage, it's not an MSX program. Nevertheless,
it can be used to produce great products.

Hopefully it's not too much for you...

We hope you really enjoy using Chaos Assembler 3 as much we enjoyed making it...

Suggestions, bugs, ideas and other things: info@TeddyWareZ.cjb.net

1.2. A little bit history

In 1997 (already over 4 years ago!) some guy named d-fader thought it was necessary to learn
Z80 ASM code. So he tried and tried and he even got better and better. After a few months he
thought he was quite good. Things he couldn't do at that time was e.g. making a scroll on MSX.
He once in the summer of 1997 visited a friend to do some computer related stuff. When he was
there, his brother interrupted the conversation and asked if he already coded MSX Z80 ASM. He
knew him from a few years before that, but their contact somehow broke. As he asked, d-fader
answered "Sure! Though | still can't make a good scroll in ASM", so the brother (from now on
identified as HeXx) said: "Aaaah! It's been a while for me, but it's quite easy: Just do this and then
this, after that do that and then it should work". He talked about bit shifting, anding stuff, also he
talked about some MSX2 copy routine and such stuff...

So d-fader answered: "Hmmm... Ehmz.... eeh... Okay!". HeXx KNEW d-fader didn't understand a
word he said. So he said to d-fader: "Tomorrow, 8:30, you WILL be here. See you tomorrow." and
he left. As you probably can imagine, d-fader was quite astonished about what he said... He had
gone home, not understanding and the next day, as HeXx said, he was there at 8.30. HeXx
opened the door. He started: "We're gonna make a scroll. I'm NOT gonna learn you MSX ASM,
I'm just gonna give you a little push in the right direction".

So the two got the dusty VG8245 of HeXXx, plugged it in, started it, started WBASS2 and they
were ready to go. The last time HeXx even started WBASS2 was about 6 years (!) before that!
After that he said okay. Now... First a great thing of MSX2, he started.

- Chaos Assembler 3 Help File -

HeXx : You know Metal Gear right?

d-fader : Yes.

HeXx : You also know Metal Gear is screen 57

d-fader : Yes.

HeXx : Ever asked yourself how come Metal Gear builds up its screens so damn fast?
d-fader : No. Fast? Hmm. You're right! A normal 'copy' command is quite slow!

HeXx : Exactemondo.

HeXx : And that has a reason. The VDP of the MSX can copy REALLY fast! Just not by using
the normal 'copy' routine!

d-fader : Wow! How?

HeXx : That's what we're gonna find out now!

At that time we didn't have any docs, no VDP docs, no nothing, just some MSX1 Z80 machine
code book. He said we were gonna look for a magazine where the 'fast' copy routine was
explained. After a while looking they found it and they started coding. Actually d-fader just looked
how HeXx coded :D.

As it was 6 years HeXx didn't do Z80, he forgot a whole lot, didn't have any significant sources
anymore and the sources he still had, had nothing to do with MSX2 copy routines. So they
(together) made the copy routine. After about a day they finished it and HeXx was back in
business, he could code Z80 again. It had all came back. The days after (wednesday-friday) they
coded on the scroll routines. It was a really HOT week. 35 degrees every day and no ventilation.
But they coded from 8.30AM to 5PM every day.

Friday they had a working scroll with some star background and vdp scroll in it. That day, the guy
now known as Chaos came back from vacation and d-fader would go the week after that (starting
on Saturday). So d-fader visited Chaos that night and he showed the demo. Chaos just was
amazed! He asked HOW'D you do THAT??

D-fader told the HeXx story (and the calls HeXx would made at 8.15AM to check if d-fader
already was out of bed :D). Chaos didn't know what to say.

D-faders week of vacation followed and after that he returned to HeXx, which had coded even
more stuff... He was really liking it! :D

As they discussed d-faders vacation and HeXx his code stuff, d-fader came up with the idea to
form a new MSX demo group. The intention of this group would be that they would've been quite
different than other MSX groups in a good way. As HeXx liked the idea a lot, they soon came up
with the question what the name of the group should be... At that moment the brother of HeXx
came in the room where they were and he started thinking of a name. After a while he already
came up with several ideas. One of them was TeddyWareZ. Though at first they thought it was
not the best idea, after a short while they came to the conclusion that TeddyWareZ was the best
idea and they already started to like it...

So far so good. A new group was born, though no one else knew it... After that the group started
to develop. They would make a first demo-disk which would've been 50% ASM. After 1 and a half
year of developing it was finished. Teddy's In Action was released at Zandvoort '98. Though we
had a stand, it was more like a wooden table with some computers on it. Visitors of the fair didn't
Page 2

- TeddyWareZ -

even see us, the only thing they saw were the big stands of FD and such. At about 4PM (one
hour before the fair would end) everybody had seen all the big stands and everybody walked up
to us looking at us questioning who we were... We demonstrated TIA whole day, nobody seemed
to care but after 4PM everybody came to our stand buying TIA.

We also gave most of the dutch magazines a review disk and TeddyWareZ was known to the
public!

Now you might ask, what has this to do with the product I'm now reading the help of? The answer
is quite simple, I'm gonna get to that right now. Teddy's In Action was created using WBASS2. A
great assembler / IDE, the difference with most (all?) other groups at that time was that we didn't
use WBASS on MSX. We used an MSX emulator (MSX4PC) and in that emulator we used
WBASS to create the complete disk! Also we've used Graph Saurus with this emulator. We really
liked this approach. To make a long story short, we almost quit MSX after the release of TIA. At
that time d-fader wanted to continue on the TI-83 (calculator of Texas Instruments) scene, which
also has a Z80 processor. As d-fader started looking for an assembler he thought of maybe using
the editor he would find for MSX.

He found a REALLY neat wrapper for TASM (Telemarks cross ASseMbler) called Chaos
Assembler 2 (CA2). The rest of the products TeddyWareZ has released until now, are written
using CA2 (this includes USW and SCC-Blaffer NT)!

Though CA2 was a great wrapper, it was actually a wrapper for the TI-83 calculators and so it
had nothing to do with MSX. Soon raise the question if CA2 could be adapted for MSX usage. At
a certain time we contacted the author of CA2, and he even replied and he was willing to adapt it
for MSX usage! As time passed by we lost contact with him and d-fader started developing Win32
applications and then the idea came to him to make an CA2 for MSX usage. The intention was to
create a program with the same options as CA2, but as time passed by, the product became
more and more extensive. That's when the idea came to call it Chaos Assembler 3.

Chaos Assembler 3 has most options of CA2 (and thus also we used TASM to compile your
sources), but CA3 has about a zillion options more!

TeddyWareZ is VERY proud of this product and we hope this product will fit the MSXers in coding
there own projects together.

Chaos Assembiler 3... Try it, use it, LOVE it!

have fun!

The TeddyWareZ crew.

- Chaos Assembler 3 Help File -

1.3. Why Chaos Assembler 3?

Why Chaos Assembler 3?

Well.. Guess that is a pretty easy question. This project started out of frustration that CA2 (Chaos
Assembler 2) did not support any needs of the MSX system. These include a cool image viewer,
project support and of course a sprite editor. So | started coding and thought up a number of
other cool options for the program and built them in. Therefor the program has become much
more advanced than CA2.

Also this project was made for experience purposes and because we love MSX.

1.4. Disclaimer

This is a pretty standard issue... :)

TeddyWareZ or anyone affiliated with us cannot be held responsible for any hardware, software,
mental, physical or any other form of damage resulting from use of this product. We do not
encourage any illegal, immoral or irresponsible use or misuse of anything or anyone associated
with us and/or this product. All procedures described in this TeddyWareZ product are executed by
the user his/her own risk.

Page 3

- TeddyWareZ -

2. Overview

2.1. IDE, Wrapper, Compiler, HELP!

In the introduction | was throwing with some difficult words. These words aren't that difficult, but |
think it clears up a lot of confusion just to explain how CA3 actually works...

An IDE is a shortening of Integrated Development Environment. This means it's an application
which has an editor and a compiler in one. Good examples of IDE are WBASS and COMPASS...
The word wrapper is actually the same, the only difference is that a wrapper uses an external
compiler to compile sources made in the editor. It's kind of an 'wrap around' the compiler
program. A good example of a wrapper is Chaos Assembler 2.

The compiler is the base of programming. A compiler is used BOTH in an IDE and in a wrapper.
The compiler makes binary (compiled) data of sources typed in some kind of editor. A good
example of this approach is GEN80. GEN80 users mostly use TED (a dutch Text EDitor) to
create ASCII sources (which of course can be created by any text editor which can save it files as
an ASCII file).

What is the best approach and why?
All three approaches have both advantages as also disadvantages.

1. IDE

IDE has one big advantage. Because the compiler is IN the application you won't have to use an
external compiler and the source you try compile will always be compiled, as it's the same
program that edits and compiles. The big disadvantage of the IDE approach is that you have to
have written the compiler yourself or you should have the source of the compiler and also have to
know how it works.

2. Wrapper
Wrappers also have a big advantage. Because it is external, the compiler can change version

and the wrapper (which didn't change of version) still can handle the new compiler. This of course

also comes in handy because at that moment only the compiler has to be replaced, this is quite
handy when having HTTP or e-mail transfer in mind. A wrapper also has one big disadvantages.
The wrapper has to call the compiler correctly, this means the wrapper application has some
settings for using the compiler. Also when a compiler changed its interpretation in a certain way,
sources could have errors all of a sudden when compiling on another computer (which could
have another version of the compiler). Also a wrapper needs to GRAB the output of the compiler
and cannot fully interact with the written source. A wrapper is 'further' away from the source than
an IDE.

3. Compiler
- Chaos Assembler 3 Help File -

Compilers have an advantage. Any kind of editor can be used to make binary files. The great
disadvantage of this is that no editor will actually interact with the user and this means no auto
calling of the compiler, no result output in the editor and so on...

CA3 uses the second approach (the wrapper). CA3 uses TASM (Telemarks cross ASseMbler).
TASM is a really extensive compiler which can handle all kinds of neat coding styles. This means
e.g. that CA3 can detect errors (generated by TASM) and list them after you compiled a file.

All those options and features will be explained later on in this help file.

2.2. Main items

2.21. The main window

Page 4

- TeddyWareZ -

#® Chaos Assembler 3 - v0.99203 M=l 3
File Edit Wiew Search Project Templates Extra MWindow Help

|D-=-u@gR --bey X||[wEmo_ &
% Untitled 1 E =10 x|

s TeddyWareZ MSX Z80 source file. o

= Prog:

s Coder d-Fader

;s Rater

s cmnt:

s Coded in TeddviWareZ' Chaos Asscmbler 3

S ofC) 2001 TeddyiWareZ!

finclude "macro's.asm"

.org 9000 - 7 b

.dbh §fe
Jihw startProgram, endPrograt, StartPrograt

|Position: 10, 3 {13y mum | | [Tnsert ,;g
Figure 1. Main screen of CA3

Here you see the main screen of Chaos Assembler 3. What always will be visible is the main
menu bar at the top of the screen as also the toolbars beneath that. These are the key features
of CA3. With these two items you can go everywhere in the program. As you might notice, there's
a window inside the main window. That's what we call a child. Automatically the main window will
be called the parent.

The child window you see here is the child window you will use the most. In the child you see,
you are going to edit your source. This child (further referred to as 'the edit child') has really neat
options build in to assist you as a programmer. More about this edit child in the next chapter.

The main menu and the toolbars are very related to each other. The most often used items in the
main menu you find back at the toolbars. The first one e.g. is a little blank white paper. When you
click on that button, a new source file will be generated and immediately an edit child will appear.

You can open as many child windows as you like. There are more windows of this kind in CA3.
- Chaos Assembler 3 Help File -

The image viewer and the sprite editor e.g. have the same characteristics as the edit child.

2.2.2. The edit child

#® First test file.asm

s DProg: A3 Test
s Code: d-Fader
s Date:

S ombl
; Coded in TeddyWareZ' Chaos Assembler 3
; (C) 2001 Teddyviarerd!
#include "macro's.asm"
.org $9000 - 7

.db ife
.iw startProgram, endProgram, startProgram

startProgram:
1d &,%10101 + §432 - 0234h

endPrograto:

I —

=10l |

Figure 2. The edit child

A small introduction to the edit child

Before | start explaining what the edit child all can do, | first want to tell that you should realize
that this part of the product is REALLY important for you. Not just because we say so, | say this
because | KNOW so. There has been put hours and hours of work to complete this editor and it

REALLY fits the MSX programmers needs.

Page 5

- TeddyWareZ -

What you see here is not just some editor. Maybe you notice the coloring and changing font
styles of some words in the editor. That's one of the extensions to a regular editor. It is tuned to
use with Z80 code and specifically the way Z80 code is interpreted by the compiler used with CA3
(TASM).

This is just a small extra feature of a default editor. What make this editor so special are the
so-called code completion and code tool tips. To keep it short, code completion KNOWS what
you are doing. E.g. when you type call startP it can drop down a menu which will contain all
labels used in the source file (or an included file) and will try to find out if there's a label starting
with startP. In this case that's true (label: startProgram) and the drop down menu will
automatically select the label startProgram. When you then press enter, code completion will
automatically insert startProgram after 'call'. That's the basis of code completion.

Code tool tips is something totally different, but equal as cool... Ever been in a situation where
you couldn't recall if the command you typed was correct, or the parameter you used was correct
Z80 language? Code tool tips can help you with that. When you type Id a, in a source and give a
call to the code tool tips, this will show ALL possibilities of Id a,!

Those are the most significant additions to a 'normal’ editor. More about these features will follow
later on in this document.

- Chaos Assembler 3 Help File -

Page 6

- TeddyWareZ -

3. Using Chaos Assembler 3

3.1. First contact

When you start Chaos Assembler 3 for the first time you will be warped directly to the settings
screen. In this screen you can (and have to) set your preferences for Chaos Assembler 3. All
settings will be set to default, those are the best while developing the application. Nevertheless,
your taste of 'perfection' might be a whole lot different than ours. That's what's the settings screen
is for.

Because of the fact that this is the first actual screen you will see when you start using Chaos
Assembler 3, I'll explain the complete settings screen first.

3.2. The settings screen

3.2.1. In general

The settings screen of CA3 is used to set all your preferences in CA3. In general | would like to
note what all buttons do you can see at the bottom of the settings screen...

Register file types

The button with the caption register file types will register the .asm and .cap file types in the
windows explorer. This means that if these file types are registered and you would double-click a
.asm or .cap file in the windows explorer, CA3 will be launched and the file you clicked on will be
opened... You can see the files are registered in the windows explorer by the icon next to the file.
If the icon looks like the icon you see at the top of this (and all other) topic, they're registered. If
CA3 was already open, there will not be a new CA3 launched, but the file you clicked will be
opened in the CA3 you have already opened. If the file types are not registered, you can press
this button to register them...

OK

- Chaos Assembler 3 Help File -

This button will save all changes you made and close the settings screen.

Cancel

This button will discard all changes you made and close the settings screen.

Apply

This button will apply all settings (i.e. Save all settings) but won't close the settings screen.

3.2.2. General tab

Preferences [Settings

IGeneraI | Azzembler | E ditor | Default Header | Code Templates

—Locatian

Default Project Directarny: IE: YproghProjectshChans Aszembler 34bin

TASM Location: IE: YproghProjectshChaos Azsembler ShprojectsCompilers TAS 32

¥ %

—Other
v Automatically save modified files on compile & build

v Automatically insert default header at top of new files

Mumber of files to list at 'Reopen IB v!

Freferred number zpstem for sprite patterns: IEinar [£]

E]

Freferred number spstem for sprite colors: IDecimaI [10]

E]

—Startup
[T Open Project Manager [T Open Chaotic Media Player

[~ Show tips on startup

Reqister file types ak. Cancel

Apply

Help

Figure 3. The general tab of the settings screen

Page 7

- TeddyWareZ -

The general tab is the first out of five tab sheets in which you can set all your preferences for
CA3. There are pretty much options, so let's not waste any space on introducing the tabs, I'll
head straight on to the explanation of all settings!

Locations

Default project directory

Click on the little folder on the right hand side of the location box to specify a 'default' project
directory. The default project directory will be used for your convenience. When you e.g. for the
first time save a file, CA3 will automatically jump to this directory so you won't have to search it
every time. This can come in quite handy when you e.g. have a directory where you save all
your source files under.This could be e.g. C:\Programming\CA3\Projects.

TASM Location

As CA3 is a so called wrapper (see Introduction chapter), CA3 needs to know which compiler
to use. CA3 can use two different compilers. The 16-bit version of TASM and the 32-bit version
of TASM. The difference between these two is that Windows NT (and thus also Windows 2000)
cannot execute the 16-bit version of TASM pretty well. Mostly it crashes. That's why the 32-bit
version is supported too. On the other hand, because the 32-bit version has to be called quite
differently by CA3 than the 16-bit version, sometimes Windows 9x can't handle the 32-bit
version that well... If you have any problems compiling your source, please refer to the trouble
shooting section of this help file.

Other

Automatically save modified files on compile / build

This option is HIGHLY recommended and should only be turned off when you are sure you
want it. This option (when enabled) saves all modified files of the project / assembly file
(projects will be explained later) before calling the external TASM compiler. Why is this so
necessary? Well, if you don't do this, TASM will used the last saved file to compile, even if you
modified the file already. But because the file wasn't saved, TASM will compile the file you
already had saved before, because it's an external compiler.

Automatically insert default header at top of new files

CA3 supports default headers. This will be explained later. A default header is a piece of text
(code) that's pasted in a file when a new file is created. With this version you can enable or
disable it. When disabled, the default header won't be inserted at the top of a new file...

This option is recommended.

Number of files to list at 'Reopen’
CA3 remembers all files you've ever opened, detailed information about this will follow later on
in this document, and CA3 can 'reopen’ these files again. This is done so you won't have to

- Chaos Assembler 3 Help File -

search for all the most recent file you've opened the last time you started CA3. This option let's
you decide how many recent files will be shown. If you fill in 8 (default) this will mean that the 8
most recent files will be listed.

Default number system for sprite patterns

The WYSIWYG sprite editor (explained later) allows you to convert the sprites you make to Z80
ASM data structures so you can easily use the sprite in your source. A sprite of course consists
of two parts. The first part is the pattern data and that data can be copied to the clipboard in
three formats. First the binary, which is recommended, so you can actually see a pattern in
your sprite.

Default number system for sprite colors

The second one of the data structures is the color data. The recommended use is decimal or
hexadecimal, whatever you prefer. The binary system is not recommended because of two
reasons, first of all it makes your code NOT readable and secondly, it's not natural to have
color data in binary mode, cause changing the data is inviting for mistakes!

Startup

Open project manager
When enabled, the project manager will automatically show the minute you start CA3. The
project manager will be explained later on in this help file.

Open Chaotic Media Player
When enabled, the Chaotic Media Player (CMP) will automatically show the minute you start
CA3. The CMP will be explained later on in this help file.

Show tips on startup

When enabled, CA3 will show little 'Did you know' sentences when you start CA3. This is a
nice feature and is recommended for those who just start with CA3. You can learn some neat
things about CA3 in this way without having to browse through this help file.

Page 8

- TeddyWareZ -

3.2.3. Assembler tab Syntax options for the TASM compiler
Enable one or more of these options to let TASM check for these syntax related parameters.

For more information about this is again refer to the Invocation part of the TASM
Preferences / Settings - X| documentation...

General ||.¢‘-.sseml:uler | E ditor | Default Header Code Templates
—Lizt File

Iv iDutput listing file of object file.. ;

[Include label table in listing file...
[+ Expand source macro's...
[~ Page break and format listing file for printing...

[T Open listing file after assermbly...

~Syntax 3.2.4. Editor tab
¥ lgnore caze in labels. .
¥ Check for apparent llegal use of indirectian. .. e = El
[T Check for unuzed data in arguments. . General | Agzembler || E ditor | Default Header | Code Templates
v Check for duplicate labels... | T I
¥ Check far non-unary operatars at start of expression... —Font —Size —Preview
IEDurier M |1 1]
Reqister file types ak. Cancel Spply Helm Abadi MT Condenzed Light - 1 &
Andale Mana o
Figure 4. The assembler tab of the settings screen Avial 4
Arial Black E LaBbCoIxYyiz
Book Antiqua g
Caligto MT 10
Century Gothic 12
Listings Comic Sans MS
Copperplate Gnthic B_u:ulu:l ::g LI
Output listing file of object file Egﬂﬁ;’plate Gothac Light
TASM ger_1erates an object file (the_ alctua'l file that is runnable on the M_SX) f’zmd besides that, Ciowrier Mew el el el
you can direct CA3 to generate a listing file of the generated output object file. When enabled D efault
you have 4 extra options regarding to the listing file. These are explained in the Earth hd Foreground | Background |
UNREGISTERED DEMO VERSION part of the TASM documentation...
[¥ Use auta indent Default |
Syntax Reqister file types ak. Cancel | Apply | Help |

- Chaos Assembler 3 Help File - Page 9

- TeddyWareZ -
Figure 5. General tab of the editor section in the settings screen.

The editor section of the settings screen, let's you decide how the editor of CA3 (edit child) looks
like. First the general tab sheet.

Font

Font

What kind of font do you want to use in the editor? Recommended is COURIER NEW. Be sure
to at least use a FIXED font width. This is for the readability of your source, it just looks better
with a fixed font and is better for your eyes since reading that will take not as much energy
when every letter / word has a fixed space to each other.

Size
The size of the font you want to use. Recommended is 8-12. Try not to get the font size any
larger, check the Font section why (readability).

Preview

When you change the font and or font styles, the changes will be directly applied to the preview
box. In that way you can decide whether or not you like the current settings, before making the
changes 'for real'.

Use auto indent

TASM requires every command to have at least one white space at the beginning of the line.
Normally you use a TAB character for that. That's just for the readability. When you check this
option, CA3 will enter the white spaces at the beginning of the line you pressed enter into the
new line. With an example this is better to explain:

MyLabel:
1d a,4
1d b, 6
call MyProc [Enter]
I

The | indicates the cursor position after you've pressed enter at the position where the [enter]
text is. That's auto indent. Recommended!

Default font color

This is the color for the default font used in the editor. More about this in the Colors tab of this
editor screen. Recommended font colors are Black and White (Black for foreground and White
for background).

- Chaos Assembler 3 Help File -

Preferences / Settings : El

General | Azzembler ||E|:Iit|:|r | Default Header | Code Templates |

General Color I

—Element

Binary Nurmber IIIIIIIIIIIIIIIIIIII LA
Comrment e [Italic
Decimal Mumber
Diefault Text [Underine
Defiritions)
Hexadecimal Murnber [Stikeout
K.epwords
String

[Detault Foreground v Default Background

finclude "macro's.asm"

L

.org $e000 + 01010101

Start: -
[4] 3

Fieaizter file types (1] Cancel Spply | Help |

Figure 6. Color tab of the editor section in the settings screen.

Since the editor of CA3 has a syntax highlighting routine in it, we thought it would be nice to make
these colors customizable. And that's what you can set right here.

Element

Select an element

Click on one of the listed elements to change the color of that element. As you can see here,
I've selected the binary number element. Directly after you select an element, the little color
palette will show the current colors and styles for the selected element. When you enable the
Default foreground the color used for a binary number will be the color selected for the font in
the General tab of this settings screen. The same goes for the Default background only then it
(of course will be for the background color of the element).

Also you can select a font style to be used for the element. If you check the .org in the preview
editor, you'll notice it's bold. That element has both the default fore- and background color, but
has the bold option checked.

Page 10

- TeddyWareZ -
To select a certain color, use LEFT MOUSE CLICK for a foreground color and RIGHT MOUSE This is quite easy, just type away in this window. There's no restristion in the size of the text,
CLICK for a background color. though you probably don't want it too big. When you use the pipe symbol (|) for the first time, the
cursor will be placed at that point after inserting the default header.

3.2.5. Default header tab 3.2.6. Code Templates tab

Preferences / Settings i il Preferences / Settings i il
General | Bgzembler | Editor ||DefauItHeader | Code Templates General | bgzembler | Editor | Default Header |||:.:u:|e Templates |
; TeddyWareZ MSX Z80 source file. (= Shortcut |[Erief]Descriptinn -

Piuzh all registers

} Prog: | popa Fiop all regi'sters —
: Code: d-fader DaCopy Glabal foopy rautine
hir EHorizontal Retrace

; Date: :
:] ertical retrace _ILI
;oCInt ll—l 4

; push af 4|

; Coded in TeddyWarei' Chaos Assenmbler 3 push he
H push de
;o(2) 2001 TeddyWareZ! b rush hl

#include "macro's.asm'” |

Lorg 9000 - 7 -
o - '
[a ddd | Delete | Edit

Inzert a vertical bar [I] to indicate the cursor position after inserting...

Register fils types ok, LCancel Apply | Help | Reaister fil: types | ak. Cancel Apply | Help |

Figure 7. Default header tab of the settings screen. Figure 8. The code templates page of the settings screen.

What is a code template?
What is a default header? Code templates are one of the very powerful features of CA3. Basically a code template is
The default header is a nice feature used with new files. When you've enabled the option in the nothing more than a piece of code. This code you can then insert in the program you are coding,
General tab (which is the default and also recommended) the piece of text you've entered here at any place and any time, just by typing the code template shortcut and giving a call to the code
will be pasted at the top of a new file. template processor.

In this way you can insert 'often used' code in a few letters of typing, which decreases the release
How do I use a default header? date of your project!

- Chaos Assembler 3 Help File - Page 11

- TeddyWareZ -

How do I edit these code templates?

As almost every window of CA3, this window is really easy to use... Push the Add button to add a
code template, Delete to delete the selected code template and Edit to edit the selected code
template. The edit and delete buttons are only enabled if they 'really’ will do something, just as
the apply button.

Add Code Template . x|

Shortcut name: IMyTemplate

Description: ITempIate for blahblahl|

(0] 4 Cancel

Figure 9. Add a new template

When you click the Add button, this screen will pop up. You can give a shortcut name and a
description to your new code template. The shortcut is used when you want to insert a code
template into your source as mentioned before in this topic. The description part is used by the
main window of CA3 (in the Template item of the main menu, we'll get to this later)

Insert an ampersand (&) in the description to let the item have a hotkey, e.g. when you have this
description: My &code template, and you pop up the template menu in CA3, it will be displayed
as My code template. In this way, when you press the 'C' key, CA3 will insert the My code
template template.

The little editor is available when you've selected a code template in the list box. If you've done
that, this edit box is always waiting for your input. You enter the actual code for your code
template in this edit box. Also this edit box 'auto saves' the template when you e.g. select
another template.

Insert a pipe symbol (|) in the code of your template to indicate the cursor position after inserting
the code template into your source...

Although the edit button seems to have something to do with the edit box, this is not true. As
said, the edit box is always edit able when a code template is selected. The edit button let's you
edit the Shortcut name and the Description of the code template that's been selected in a
screen similar to the screen showed in Figure 9.

- Chaos Assembler 3 Help File -

3.3. Main window

3.3.1. Main menu

3.3.1.1. File menu

Mt *
'}

[Z Open... Chrl4C
ﬁ Open Praject, ..

Reopen r
E Save Chel45
ﬂ Save As. ..
‘:'_,'* Save Project 8s...
ﬁ Save all
&P Print... Ctrl+P
E‘gg Close Crl+F4
a; Close all open files Chrl+F12

Close all (including project)... shift+Chrl+F12

Exit
Figure 10.1 File Menu

[Document CErlM
ﬁ Document fand add to project) Shift+Cerl+0

Figure 10.2 File Menu (NEW)

Page 12

- TeddyWareZ -
0, CihprogiProjectsiChaos Assembler 3\project)Sources BHMTPlaw\EMTRlay. cap

1. C\progiProjectsiChans Assembler 3\bin\Firsk test file, asm
2. ci\proglProjects\Chaos Assembler project)SourcesiBMTRlaw BRTPLAY . ASM
3. CiiprogiProjectsiChaos Assembler 3projecthSourcesiUntitled 1,asm

Mare. ..

Figure 10.3 File Menu (Reopen)
New
When you point your mouse to new, figure 10.2 will appear.

Document
Click this to create a new source file. Directly after you clicked on this item, a new edit child
will be created, and if enabled, the default header will be pasted at the top of the new file.

Document (and add to project)

This is the same as the other Document item, except for the project. CA3 can work with
projects, this will be explained later. When you click this item a new document will be created
but it will also be added to the project you are working on. If you don't have a project open, a
new project will be created.

Open

This option will open the screen showed in figure 11. With this screen (which is the default
windows open dialog) you can select a file to open with CA3. When you select an .ASM file, CA3
will open a new edit child and fill it with the text inside the file you've selected.

When you open a .CAP (Chaos Assembler Project) file, explained later, it will open a CA3 project
file. As said, this will be explained later on in this documentation.

- Chaos Assembler 3 Help File -

Open assembler file{s)... i ilil
Zoeken ir: Ia bin j = £ B2~

Q First kest File, asm

Bestandsnaam: Openen

Eestandst_l,lpen: Eil_Jpl:njrtEd Iypes [asm, *.cap, :':_ir'u::] Anrleren |
L

Figure 11. Open dialog

As you might notice from this window, is that the text is NOT ENGLISH. Actually it's dutch. We
didn't do this on purpose. Because it's a default windows dialog, it's shown in the language of the
installed windows. In your case it will be in the language YOU have installed windows under.

Open Project
See Open, the only difference is that this window only can open project files, in stead of All
supported types.

Reopen

General

The reopen menu is used to open the most recent files with one click. In the settings screen
you can edit the number of items displayed in this menu item. You see two 'delimiters'. Above
the first delimiter are the most recent opened .ASM files. Below the first delimiter you see the
most recent opened .CAP (Project) files.

More...

Below the second delimiter you see an item called 'More'. When you click this item, the screen
showed in figure 12 will be opened.

Page 13

- TeddyWareZ -

* Recent projects / files overview...

Save project as...

FroEcts | | This is similar to the save as option, the only difference is that it will not save the active edit

T — | Size [Eytes] | et rren | window, but the project file (the .CAP file).

C:hproghProjectzhChaos Aszembler 3sbin'First test file.azm 342 [06-09-2001]1 7-47]

c:\proghProjectssChaos Assembler 3hprojecthS ources BN T Flayh... R2.8E1 [05-09-2007[08:12] Save all

C:*proghProjectshChaos Aszzembler 3projectSourcesiUntited 1.... 366 [02-09-2007][15:15] Click this item to save ALL files opened (edit childs) and the project file at once. If necessary, a

save dialog will be shown (of course only for the files that haven't been saved before).

Print
Click this option to get a preview of the active edit child. In this screen you can see how it will
look if you print the text in the edit window. In that screen you can select to actually print the text.

Close
Closes the active child. This doesn't have to be an edit child. This can be any kind of child
window.

Close all (including project)
Closes all active childs and also closes the open project. of course this option will only be
available when a project is open.

Exit
Close Chaos Assembler 3 (You probably don't need to use this option :D).

Figure 12. The open list.

In this screen you have two tab sheets. The first one will display all projects EVER opened by
CA3. The second one will display ALL other files ever opened. If you click on one of the
headings of the list (Filename, Size (Bytes), Last Modified), the list will be sorted on that
column. Clicking on the same column, will reverse the sorted column. In this way you can sort
in ASCENDING and DESCENDING order.

If you Double click on a file or project, CA3 will open the file you requested.

Save

Click this item to save the active child edit to disk. if the file wasn't saved before (new file) than a
pop-up dialog will appear, similar to figure 11. In this dialog you can specify a filename and look
for an appropriate location. If however the file was saved before or you opened the file and you
click this item, the existing file will be overwritten with the current text in the active child edit.

Save as...
Similar to the save option, the only difference is, this option will always open the save dialog even
if the file has been saved before.

- Chaos Assembler 3 Help File - Page 14

- TeddyWareZ -
3.3.1.2. Edit menu

3 ndo Ckrl4-Z
T4 Redo Shift+CErl+Z
3 cu Chrl+
Copy Chrl4+C
B, Paste kel

Return to last position Alc+Eksp

Figure 13. The edit menu.

This menu will only be available if the active child is an edit child. And even when there's an
edit child opened, it may be that some of these options are not enabled.

Undo
Undo last changes made to the active edit child.

Redo
Redo the last undo made to the active edit child.

Cut

Move the selected text in the edit child to the windows clipboard.

Copy

Copy the selected text in the edit child to the windows clipboard.

Paste
Paste the text stored on the windows clipboard in the active edit child at the current cursor
position.

Return to last position

This option will only be enabled if you've 'clicked' on a label. After you've clicked on a label, CA3
will jump to the declaration of the label and with this option you can return to the place from where

you jumped to the label.

- Chaos Assembler 3 Help File -

3.3.1.3. View menu

Toolbars k
Project Manager F11
Lask compiler output. .. Chrl+F3

&l errors of last compilation F10
Lisk file. .. Shifk+CErl+L
Figure 14.1 The View menu

The view menu handles the layout of the screen.

Toolbars

P ctandard Chri+Al+s
|w Edit Crl+-Al+E
G

[Window Chrl-AEHW

Figure 14.2 Toolbars

Click on one of these items to enable or disable a tool bar. Toolbars are the little bars below the
main menu (explained further on in this document). If a tool bar is currently visible, the item of the
tool bar is 'checked'

Project manager
When you click this item, the project manager will become visible or not visible, according to the
current visibility.

Last compiler output
Will open a screen with the complete compiler output of the last compiled files, as you can see in
figure 15.

Page 15

- TeddyWareZ -
*® Compiler output {last build / compile = |I:I|£|

TASM 280 Assemhler. Wersion 3.2k Febh, Z0OOO0.
Copyright (C) zZ000 Scuak Walley Software

tasm: pass 1 complete.

tasm: pass Z complete.

tasm: Mumber of errors = 0

Figure 15. Last compiler output

As you can see here, this window shows the compiler output for the latest compilation. If the last
compilation consisted out of more than one file, you can view the compiler output for every
separate file by selecting the tab sheet with the correct filename at the bottom side of this
window.

All errors of last compilation

If you compile a single file, this option is not really necessary because you can view all errors in
the edit child that contains the errors, but when you've built a project, which can consist out of
more than one file, it might come in handy to have an overview of all errors in all files. Figure 16
shows the window I'm referring to.

- Chaos Assembler 3 Help File -

% Ccomplete error list = =10 x|

ﬁ:\prog\Projects\Chaos Aszsembler 3hvproject)Scources \BNTPlay \Brntplay.asm - Line 0130: Lahel nd
KiproghProjectsh Chaos Assemhler 3hprojecthBources \BNTPlay \Bntplay.asm - Line 0130: Inwalid
C:\progiProjectstChaos Assembler 3projectlSources|\BMTPlay\Bntplay . asm - Line 0130; Label not found: (pngverrideStDp_ERRORﬂ
ChiproghFrojectsi\Chaos Assembler SiprojectiSources \ENTFlay \Hl_bntpl.aswm - Line 0036 Label n
CiaproghProjectsiChaos Assembler 3hvprojectiSources \ENTPlay\ Ml _bntpl.asm - Line 0036: Thused

Total rumber of errors: &

Figure 16. Complete error list

As you can see here, two files in the last compilation contained errors. Check out the file names
(Bntplay.asm and MI_bntpl.asm). Also You can see that not all of the text per line fits in the
window (horizontally). To get a view of the complete line, just let the mouse FLOAT over the line
you want to see, and you'll get a pop-up HINT window which will contain the complete line!
Throughout CA3 there are more lists like this one. In all these lists you can pop-up such a HINT
window!

List file...

All files compiled by TASM will produce a list file (if enabled in the settings screen). A list file is a
file that contains your source and the opcodes related to your source lines.

You can only view the list file of the active edit child. This means the active child has to be a edit
child. Also, the active edit child has to be compiled before this options becomes available.

See figure 17.

Page 16

- TeddyWareZ -

1157
1153
1153
1159
1160
1161
1162
1163
1164
1165
1166
1187
1163
11839
1170
1170
1171
1172
1173
LI
1175

117R
4

43EBE
49cC1
490C3
49CE
49CE
439C9
49cCC
49cCC
43CF
4300
4300
43D1
439D4
439D4
43D7
43D9
43DC
43DC
43DF
49EZ
49EZ
4ar5

11
0E
cD

21
cD

3L
47

=
32

11
0E
cD

21
cD

3L
5F

4E
1n
7D

o1
0OE

4E

4E
4c
1n
7D

0z
0OE

4c

DL

F3

oo
4L

DL

DL

DL

F3

oo
4L

DL

¥ List output for file: ' prog',Projects’ Chaos Assembler 3'praje -g,@ﬁ L

=101 x|

1ld de, SongPatcsTolave
ld o,268% call bdos_call

1d hl,1
call ReadFile

1d a, (SongPatsTolave)
1d b,a

Load3ong.1:

1d a,b
1ld [(JongPatsToZave) . a

1d de, SongPatcbdrToZave
ld o,268% call bdos_call
1ld hl,2

call ReadFile

1d a, (SongPathdrToZave)
1 ~.Aa |

Figure 17. List output

This is the window you can view the list file of a compiled file. Not much to say about this, just

notice the MNEMONICS right and the corresponding OPCODES |eft.
The first characters of each line are the lines as they are in the source file...

- Chaos Assembler 3 Help File -

3.3.1.4. Search menu

#4h Find. . ChrHHF
Gy Find in Files... Shift-CErlF
353 Replace... Chrl4+-R
Find Nesxt F3
" Find Previous Shift+F3

,;"1 Incremental Search Chrl+E

r o to line number... Alt+G

Figure 18. The search menu

All these options are ONLY available if the active child is an edit child!

Search Text _

X

Search far: thiz

— O ption
[~ Caze sensitivity
[T ‘whole wards anly
[~ Search from caret

[T Selected test anly

£l

Direction
f+ Fanvard

" Backward

o]

Figure 19. The find dialog

The first item in the search menu is the find option. When you click that item, this dialog window

will pop-up. You can enter your search command in here.

Search for

Type the string you are searching for after this caption in the drop down edit box. You can

drop down the box to select the most recent search strings.

Case sensitivity

If checked then the search will be executed with CASE SENSITIVITY, this means the string

you are searching for will be LITERALLY in the text, with character case in mind.

Page 17

- TeddyWareZ -

Whole words only

Check this if you don't want CA3 to search for the string in a part of a word, so if this is
checked, there's assumed that your search string is a complete word.

Search from caret

When checked, CA3 will begin its search from of the current cursor position, in stead of starting

at the top of the file.

Selected text only

If checked, CA3 will only search for the search string in the part of the file that's selected.

Direction

Forward means search from somewhere till the end of the file, backward means search from

somewhere till the beginning of the file.

Another search feature in CA3 is the so called search in files search action.

Find Text

Search Phraze; Ithisl

O ptiarn Where
[T Case Sensitive Al open files

[whole words only {* Al files in project

(" All open files and all files in project

ok

Cancel

Figure 20. The find in files dialog

Here itis... The two options (Case sensitive and Whole words only) at the left are the same as in
the default find dialog. The difference between this find dialog and the other one is quite big

though.

The default find dialog only can search in the active edit child.

This find dialog however can search in three different ways:

All open files

When checked, the search will be committed to all open edit childs.

- Chaos Assembler 3 Help File -

All files in project
When checked, the search will be committed to all files in the project. There won't have to be a
edit child open for this operation, though you HAVE to have a project available, as there will
be searched in all files in the project in stead of open files.

All open files and all files in project
Combine the two listed above and you know what the dialog will search for when you start

searching.

When you start your search, all hits will be combined into one big list, and a window will be shown
with all hits in it (see figure 21).

#® Search Results...

"CivproghProjectshChaos
"CivproghProjectshChaos
"CivproghProjectshChaos
"CivproghProjectshChaos
"CivproghProjectshChaos
"CivproghProjectshChaos
"CivproghProjectshChaos
"C:\proghProjectshChaos
"C:\proghProjectshChaos
"CivproghProjectshChaos
"CivproghProjectshChaos
"CivproghProjectshChaos
"CivproghProjectshChaos
"CivproghProjectshChaos
"CivproghProjectshChaos
"CivprogiProjectshChaos
"CivproghProjectshChaos
"C:\proghProjectshChaos
"C:\proghProjectshChaos
"CivproghProjectshChaos
"CivproghProjectshChaos
"CivproghProjectshChaos
"CivproghProjectshChaos
"CivproghProjectshChaos
"CivproghProjectshChaos
"CivprogiProjectshChaos
"CiproghProjectshChaos
"C:\proghProjectshChaos
"C:\proghProjectshChaos
"CivproghProjectshChaos
"CivproghProjectshChaos
"CivproghProjectshChaos
"CivproghProjectshChaos
"CivproghProjectshChaos
"CivproghProjectshChaos
"CivproghProjectshChaos

=10olx|
&ssembler ShprojecthSourcesiBNTPlav Bntplay.asm” (1715): call ResetsCC ;I
Assembler SyprojecthSourcest\BNTPlav W Bntplay.asm” (1770): call SetsCC
Assemnbler 3yprojectiSources\BNTPlay\Bntplay.asm” (1785): call ResetSCC
Assembler 3yprojectSources\BNTPlay\Bntplay.asm” (1848): call SetsCC

call ResetsCC
call PSG.5topSound
call PSG.5topSound

Assembler 3yprojectiSources\BNTPlay\Bntplay.asm” (1853):
Assembler 3yprojectiSources\BNTPlay\Bntplay.asm” (1855):
assembler 3yprojectiSources\BNTPlay\Bntplay.asm” (1877):

Assermnbler 3yproject\Sources\BNTPlavsBntplay.asm” (1887): call SetsSCC
Assembler 3vprojecthSources\BNTPlay\Bntplay.asm” (1892): call ResetSCC
&ssemnbler 3yprojectsSources\BNTPlav Bntplay.asm” (2285 call SetsCC

call ResetSCC
call stopMusic

&ssembler ShprojecthSourcesi\BNTPlav Bntplay.asm” (2296
Assembler 3vprojecthSourcesh\BNTPlav W Bntplay.asm” (23700

Assembler 3yprojectSources\BNTPlay\Bntplay.asm” (3116): call SetsSCC
Assembler 3yprojectSources\BNTPlay\Bntplay.asm” (3175): call ResetsSCC
Assembler 3yprojectiSources\BNTPlay\Bntplay.asm” (3181): call DoPsG
Assembler 3yprojectiSources\BNTPlay\Bntplay.asm” (3207): call stopMusic
assembler 3yprojectiSources\BNTPlay\Bntplay.asm” (3278): call SetsSCC

call ResetSCC
call nz,doFadeMusicPSG
call enaslt §

Assembler 3vprojecthSources\BNTPlay\Bntplay.asm” (3283):
Assembler 3yprojecthSources\BNTPlay\Bntplay.asm” (3681):
&ssemnbler 3yprojectsSources'\BNTPlav Bntplay.asm” (4034
&ssembler ShprojecthSourcesi\BNTPlav\Bntplay.asm” (4074 call enaslt i

Assembler SvprojecthSourcest\BNTRPlav\Brtplay.asm” (40820 call InitMapper+afs 3
Assembler 3yprojectSourcesh\BMNTPlay\MI_bntpl.asm" (17): #defcont Y cal

Assembler 3yprojectSources\BNTPlay\MI_bntpl.asm" (32): call chgMod]
Assembler 3yprojectSources\BNTPlay\MI_bntpl.asm" (176): call chput
Assembler 3yprojectiSources\BNTPlay\MI_bntpl.asm" {192): call chput

Assembler SyprojectiSources\BMNTPlay\MI_bntpl.asm" {206): ; --- The actual call to the replay r
Assembler 3vprojecthSources\BNTPlay\Bntpmacr.asm” {18): bdos_call .equ $f37d

Assembler 3vprojecthSources"BNTPlay\Bntpmacr.asm” {102): #defcont YL
&ssemnbler 3yprojectsSources\BNTPlav\Bntprmacr.asm” (105): #defoont AN
&ssembler ShprojecthSourcesiBNTPlaysMI_macnt.asm® (141 ; This function will call the replaye
Assembler SvprojectSourcesh\BNTRlavWMI_macnt.asm® (19): ; needed to actually correctly calli

Assembler 3yprojectSources\BNTPlay\MI_macnt.asm” (27): #defcont Y call :
Assembler 3yprojectSources\BNTPlay\MI_macnt.asm” (36): ; for the R
Assembler 3yprojectiSources\BNTPlay\MI_macnt.asm” (40): RepFunction .equ $f7fg

Assembler FyprojectySources\BNTPlayyMl_macnt.asm” (79): ; To call the replayer, you need th'+|

-

Figure 21. Search result of search in files.

As you can see here, all hits are listed in this list. Notice that everywhere you look, you see the
word 'call' in bold style. You've guessed it, that's the word where | was looking for. When you
doubile click on a line, the corresponding file will be focussed or opened and the line where the
search string has been found will be completely selected. The separate hits are divided into three
Page 18

- TeddyWareZ -
parts. First it contains the filename between double quotes ("). After that you see the line where
the string was found and last you see the complete line where the string was found.

Replace...

This dialog is similar to the find dialog. The difference is that this one can replace the found text
string into another. The extra options in this dialog are self explaining, so no space wasted on that
issue :) .

Find next

When you've searched for a string using the find dialog or the incremental search (explained after
this) you can search for the same string again by the Find next option. It will start a 'new' search
from of the first character AFTER the latest hit.

Find previous
See Find next, only difference is that it will search BACKWARDS in the file in stead of
FORWARDS.

Incremental search

One of the most powerful (and probably new for you) search action is the Incremental search.
Incremental search can be interpreted as type and search at once.

When you select this option, your edit child will look like the one in figure 21.

SEMLoad:
call BuildFile
Jp nc,3BMLoad. 1

1ld a, (3ilent)
or &

i ,,I,. ,,,,,

N |Searu:hing For: call 2,

Figure 21. Incremental search in action

- Chaos Assembler 3 Help File -

Here you see the incremental search in action. As you can see, the edit child has got a status bar
in which you see 'Searching for:'. The concept is really easy. When the incremental search is
enabled, just type, and the selection in the file will change to what you've typed. It's kind of hard
to explain, just look at the figure. I've searched for 'call z,' and as you can see the first line found
where call z, is in, is selected and showed.

The Find next and Find previous options also work in conjunction with the incremental search.

Go to line number...
This last search action is a quite simple one. It opens a dialog where you can enter a line number
and when you press OK, the line you've entered will be selected. That's all.

3.3.1.5. Project menu

[ﬁ #dd exbernal file ko project. .. Shife+Ckrl+-Enter
Add ackive window to projeck Ckrl+F1
== Remove active window From project Chrl+F2

add all windows ko project

Ly Compile 'Entplay. asm'. .. Ckrl+F9

Tolal

b . . :
%‘M Build 'Ci\progiProjectsiChans Assembler 3project! Sources\BNTRIaWIBNTPlay. cap'... F9
Figure 22. The project menu

Add external file to project...

This will open the already explained open dialog. You can select a file and when it's selected,
CA3 will add the file to the current project. If there's no project available, a new project will be
created.

Add active window to project
This will add the active edit child to the current project. If there's no project available, a new
project will be created. If the active child is not an edit child then this option will not be enabled.

Remove active window from project
This removes the active edit child from the project. If the window is not part of the project,

Page 19

- TeddyWareZ -
nothing happens, if the window is the last file in the project, the project will be closed (no project
will be available anymore).

Add all windows to project
This option is the same as the Add active window to project, the difference is that this option adds
all open edit childs to the project.

Compile ‘Filename"'...
This option compiles the active edit child. It will open the compile window and execute TASM to
compile the file. More about compiling files later on in this help file.

Compile 'Project Filename"'...

This option will build the project if a project is available. It will open the compile window and
compile all files in the project that need to be compiled. More about building projects later on in
this help file (in the chapter where | will discuss projects).

3.3.1.6. Template menu

Edit code kemplates Shifk+CErH-E
(pusha} Push all reqisters

[popa) Pop all regiskers

(DacCopy) Glabal copy routine

thr) Horizontal Retrace

(vl Wertical retrace

fcd) Copy data

[hinta) Hook interrupt $F09E

[uinta) IInbook inkerrupt $F094
(hinkF} Hook interrupk $F0AF

[uinkf) IInbiook inkerrupk $FOD9F
(d-fader) Fade from palette ko palette
(DoReplay) Do replay (blaffer NT rouking
(rex) Routing Explanation

Figure 22. The code templates menu

The templates menu is not really necessary, but just added for convenience. There are three

- Chaos Assembler 3 Help File -

reasons why this menu is here.

The Edit code templates menu item warps you directly to the code templates page in the settings
screen. This menu, however, has more to it. It lists all available code templates. This means
you can see the Shortcut as also the Description of the code templates. When you click on one
of the code templates, it will be directly inserted at the caret position in the active edit child.
That's the second convenience option. The third one is (of course) if you don't remember the
shortcut name complete or you don't exactly know what the template you are referring to does,
you can check it all out in this menu.

However, code templates can be inserted in the active edit child by typing the shortcut name
and hitting CTRL+J (More about this later on in this document).

Page 20

- TeddyWareZ -

- Chaos Assembler 3 Help File -

3.3.1.7. Extra menu

Sprite Editar Chrl+F&
Image Yigwer Ckrl+F10
Chaotic Media Playver (tm) shift+F11

Preferences | Settings... Alk+35

Figure 23. The extra menu

The extra menu contains the Preferences / Settings item which will warp you to the settings
screen described earlier in this document (chapter 'The Settings Screen').

The other two items will be discussed extensive later on in this document.

Sprite Editor

The sprite editor is a VERY POWERFUL option of CA3. It's a Sprite Mode 2 editor. And | think it's
one of the first and only sprite mode 2 editors... But to save things for later, I'll quit this subject
now.

Image viewer
The image viewer is another very powerful tool of CA3. With this tool you can view almost any
screen 5 and screen 7 image formats including palette information!

Chaotic Media Player

The only feature of CA3 | will discuss in this topic is the Chaotic Media Player. This feature is a
nice add-on to the development environment. The only thing it can do up to now is playing MP3
files. This means you won't have to use winamp anymore to play your MP3's :)

The Chaotic Media Player (CMP) has pretty much to do with the project you are working on.

When you click this option, the window showed in figure 24 will show directly. This is also a child
window, this means it will show inside the parent window.

Page 21

- TeddyWareZ -

¥ Chaotic Media Player {tm) x| Selects the last song in the list.

TR S I RS Play
Starts to play the selected song.

—Currently Plaging / Selected to play——————————

|C:sound\mp3iTrance 2001 The Second EditiontC| giw e oaving of th t

ops the playing of the current song.
Pozition: i P Playing J
[. Pause

Pauses the song. Click pause again to resume.

Plawlizt -
Touch Me Open song(s) and add to list
Tron Warps you to an open dialog where you can select MP3s, these will be added to the current
K.emistry list.
Lovin'
e Alive Remove songs from list
.=--1.= - Removes the selected song(s) from the list.
Feelin' Good
Seven Or Hine L

Interface
As you might think the CMP window has to be open if you want to play music, this is not true. The
window is just a wrapper around the actual MP3 interface. If you close the CMP and the music is

Evemtime ou Need Me
Waste Land

Silence
K.omoda = playing, the music won't stop playing, it will just continue! In this way you won't have to have the
' | _'*IJ

1 [T

:l window open all the time when playing the music YOU like.
The CMP is project dependent. This means that the list you have in the CMP when you save a
Figure 24. The chaotic media player! project, will be saved into the project. In this way each project can have its own CMP list.

Here you see the CMP in action! As you can see it just contains a list of files (which you can
decide, of course) and some information about the current song and some buttons at the top of

the window. 3.3.1.8. Window menu

The buttons from left to right:

B Cascade
First . . . = Tile Horizontally
Selects the first song in the list. : ;

T Tile Wertically
Prior Arrange Al
Selects the song prior to the current song. Mimirnize: Al
Next Arrange ko fit Alk+F
Selects the song after the current song. e Minimize Chrl+Down

% Horrmalize iZkrl4-=
[T Maximize Chel+Up

- Chaos Assembler 3 Help File - Page 22

Last

- TeddyWareZ -
Figure 25. The window menu

Cascade, Tiles, Arrange all, Minimize all
These are default options for a program with an MDI. I'm not gonna explain this. If you don't know
what these options do, please refer to a windows manual.

Arrange to fit

One of the most powerful windows options I've ever seen is the Arrange to fit method. It works
quite simple. The concept is that you ALWAYS have an overview of ALL child windows you've
opened. See figure 26 to see what | mean.

#® Cchaos Assembler 3 - v0.0920 M=] B3
File Edit M“iew Search Project Templates Extra ‘Window Help

oz -mdgE-cbes X|[mamo_ &

* First test file.asm =

. =101 %]

|; TeddyWares MSX ES0 source file, o

S Prog: CAF Test

s Code:r d-Ffader

;s Date:

;ocmnt:

s Coded in TeddvitareE' Chaos Assembler 3

SO0C) 2001 TeddyWareZ!

f#include "macro's.asm™

.org §9000 - 7

.dh §fe
Ly startProgram, endProgram, startProgram

[&[0 x|

|Position: 1, 1 {593 [MUM | | [Insert o

- Chaos Assembler 3 Help File -

Figure 26. Arrange to fit.

The concept

Here you see the Arrange to fit feature in action. All windows that are minimized have the same
size as the active window. This means you can ALWAYS get to ANY file you've opened. When
you e.g. would double click all minimized windows, no minimized windows would be shown
anymore. Executing the arrange to fit will result in the active window to fit the screen correct again
and the other windows will be minimized again.

That's it, try it, I'm sure you'll love it!

Minimize

Minimizes the active child.

Normalize

Normalizes the active child, i.e. that the active child will not be minimized nor maximized, but will
have the 'default’ window properties.

Maximize
Maximizes the active child.

3.3.2. Toolbars
3.3.2.1. Standard toolbar

D-=-E @

Figure 27. The standard tool bar.

All toolbars in the program have their corresponding action also listed in the main menu. This
standard tool bar buttons are ALL listed in the File menu of the application.

I'll discuss the buttons from left to right.

New
When you click on the little white paper, a new document will be created (but not added to the

Page 23

- TeddyWareZ -

project). This is the default action of this button. When you click the 'down arrow’ of this button,
You'll get a pop-up just as explained in the New section at the File menu topic (Main Menu
chapter).

In this way you can also create a new document and add it to the project.

Open
When you click on this button, you'll be warped to the open dialog as described in the File menu
topic. If you however click the down arrow, you'll get a menu shown in figure 28.

Qper. .. kel
Qpen Project. ..

=

. CiiprogiProjectsiChaos Assembler 3project! Sources\BHNTRIaw i BMTRlay . cap

. CiiprogiProjectsiChaos Assembler 3hbinFirst kest file,asm

. CHiprogiProjectsiChans Assembler 3 project Sources\BNTPIawiM_macnt, asm
. CprogiProjectshChaos Assembler 3\project)Sources|BMTPlay\Bntpracr . asm
. CprogiProjectshChaos Assembler 3 project)Sources|BMTPlaw | Bntplay . asm

. CprogiProjectshiChaos

. CiiprogiProjectstiChaos Assembler 3hproject!Sources\BHNTRlayiM_bntpl, asm
. CiiprogiProjectsiiChaos Assembler 3project! SourcesiUntitled 1,asm

i A = U) (R R P T o)

Mare...

Figure 28. The open button pop-up.

When you click the down arrow on the open button, you'll get this pop-up menu. In this way you
can just open a file, as the normal open, as also open a project, and the complete Reopen menu
is stored here too. Quite handy, if you ask me.

Save
Save the active edit child, exactly the same as 'File > Save'.

Save as...
Save the active edit child as another file, exactly the same as 'File > Save as...".

- Chaos Assembler 3 Help File -

3.3.2.2. Edit toolbar

e

(L L} 1ol r:l ﬁ Eé % % X
Figure 29. The edit tool bar

All toolbars in the program have their corresponding action also listed in the main menu. This
standard tool bar buttons are ALL listed in the File menu of the application.

I'll discuss the buttons from left to right.
Compile
Compiles active edit child see also Project > Compile 'Filename'.

Build project
Builds the active project see also Project > Build 'Project Filename'.

Undo
Undo last changes, see also Edit > Undo.

Redo
Redo last undo, see also Edit > Redo.

Copy
Copies selected text to the windows clipboard, see also Edit > Copy.

Paste
Pastes test saved on the windows clipboard into the active edit child at the current caret position,
see also Edit > Paste.

Cut
Moves selected text to the windows clipboard, see also Edit > Cut.

Delete
Deletes selected text, see also Edit > Delete.

Page 24

- TeddyWareZ -
3.3.2.3. Window toolbar

BEOO_ =

Figure 30. The window tool bar

All toolbars in the program have their corresponding action also listed in the main menu. This
standard tool bar buttons are ALL listed in the File menu of the application.

I'll discuss the buttons from left to right.

Cascade
Cascades all active windows (this means not minimized windows). Default MDI application
option.

Tile vertically
Tiles all active windows (this means not minimized windows) vertically. Default MDI application
option.

Tile Horizontally
Tiles all active windows (this means not minimized windows) horizontally. Default MDI application
option.

Maximize

Maximizes the active child.
Minimize

Minimizes the active child.
Normalize

Normalizes the active child, i.e. that the active child will not be minimized nor maximized, but will
have the 'default’ window properties.

- Chaos Assembler 3 Help File -

3.4. Projects

3.4.1. What is a project?

Up until now there was no project support in any of the assemblers I've ever seen made on / for
MSX. CA3 will change all of this. From of now you will almost be FORCED to use projects... It's
one of the features every assembler should have, but none has. As said, CA3 supports projects.

A project actually is nothing more than a number of files grabbed together. A good example is
Blaffer NT. Blaffer NT was made with CA2 which doesn't support projects. Blaffer NT consists out
of approximately 15 ASM files. When programming the product, | had to have all files open at
once or open them as | needed them. This kind of sucks, especially when you show your source
to other users, they won't understand which files belong together and that makes the readability
fairly small...

Chaos Assembler 3 is proud to introduce project support. This means you will have a list of files
which you can open with a single click. Compiling files you don't have open? No problem, the
project manager can do it...

Another neat feature of the project manager is that it can make destination files. Normally the
compiler will output the binaries it made into the same directory as the source file, with the same
name as the source file and the '.obj' extension. CA3 let's you decide where to put the compiled
file and also with WHAT name! This means you can save your ASM files onto the disk in the disk
drive, and that disk you can then run directly on your MSX!

3.4.2. CA3 and projects

of course (probably) directly after reading the introduction topic of this chapter you wanted to
know how exactly projects work in CA3. Well, this chapter will discuss the complete
implementation of projects in CA3.

A project is something under water in CA3, just like the Chaotic Media Player (Mentioned earlier).
You don't have to see anything of a project whilst it still can be there. In stead, CA3 has got a
project manager, with which you can manage your projects. So the project manager actually is
a wrapper around the project support in CA3.

Projects are saved as .cap files. Do not edit these files manually. Let CA3 handle these files for
you, else you will probably mess up your project!
So far for the warnings, up to what is saved in a project file.

Page 25

- TeddyWareZ -

First of all, a project file saves filenames. All file locations + names that are in a project will be
saved into the .cap file. Note that it DOES NOT save the complete files into the cap file, only the
filenames so those files can be reopened after you've opened the project again. One project file

consists out of two filenames and a property. The first filename is the source file you are editing.

The second filename is the destination file. This means the file where the compiled source will
be saved to.

Last a project file contains a true or false property, which indicates whether the file should be
compiled during the build of a project. More about building projects later.

Secondly, a project file contains all kinds of window positions. It will remember ALL of your
windows and there positions. This means if you had 2 edit childs, an image viewer and the
project manager window open whilst saving the project file, CA3 will reopen the edit childs,
image viewer and the project manager at the same place and with the same size as they were
when you saved the project! The project manager will EVEN save the list of the Chaotic Media
PLayer at that moment (if there is a CMP list available). And yes. Even when you were playing a
song when you saved the project, CA3 will start playing THAT song again after opening the
project.

As an example, | will use the BNTPlay.cap project. This example project is delivered with CA3.

- Chaos Assembler 3 Help File -

3.4.3. The project manager

Project Manager |
o (=5 X
I i Add Remove
= &

Properties Build Compile

File | Lozation | Deztination |

@ Britplay. azm C:AExamplesh C:AE wamples\Compiled BN T Play. bin

@ MI_macnt. azm C:AExamplesh C:AE wamples\CompiledsM]_macnt. bin

'@ MI_britpl. azm C:hEwamplesh C:AE wamples\CompiledsML_brtpl. bin

@ Bntpracr.azm C:MERamplest C:ME Ramplezt\Compiled B rtpracr. bin

I 4

Figure 31. The project manager

Here you see a small window called the project manager. There really isn't much to say about
this window, cause it's small and really easy to use.

Some things you should know

¢ Something quite important is the moving of project files. This has no function at all, but is for
the readability. When you press right mouse button on the list box you'll get a menu, with
which you can MOVE one project file up or down. In this way you can keep your files together,
just as this project has done.

e When you add a file to a project or save a new file for the first time that is in a project, the
destination file will be the located in the same directory as the source file with the .bin
extension.

o Project files will be saved relational if that is possible. That means that if the project file (.cap)
is located in the directory c:\examples\BNTPlay.cap and the source files are located in
c:\examples\source*.asm (e.g. c:\examples\source\BNTPlay.asm) and you would copy the
complete example directory to c:\prog\projects\CA3\examples there will be assumed that the
BNTPlay.asm file is located in the c:\prog\projects\CA3\examples\source directory.
However, if the file could not be relational saved (e.g. .cap file is located in c:\examples and

Page 26

- TeddyWareZ -
the source file is located in c:\prog\default files, the filename will be saved absolute. If you
save a file in the default project directory (see settings), it will be saved relational in a
different way. This means if the default project directory changes, there is assumed this file is
also located in that new directory. This can come in handy when you're using sources on
another computer with a different defaults project directory but with the file you're referring to in
that directory!

The tool buttons (the big buttons at the top of the window).

New
This button corresponds to the main windows 'File > New > Document and add to project'. It
creates a new file, will open it and adds it to the project.

Add

This button corresponds to the main windows 'Project > Add external file to project'. It opens
an open dialog and if you select a file there it will be added to the project (so it will be directly
visible in the list you see).

Remove
Removes the selected file (in the list) from the project. If it's the last file in the project, the project
will be closed.

Properties

This will open the properties window of the selected file. In that window (shown in figure 32) you
can select the destination file and whether the file should be compiled during the build of the
project. More about this you can find at the CA3 and projects and the last paragraph of the
UNREGISTERED DEMO VERSION sections.

Change Properties for: Bntplay.asm =]

Source File: Z:AE xamplezBntplay

e

D ezstination file; IE:"«EHamples‘nEnmpiled\BNTP'Iay.I:uin
[+ Compile file when building project

Cancel |

Figure 33. Properties window for a project file

The source file is not edit able. That's because that's the identification of a project file. You can
change it by using another file to add to the project.

- Chaos Assembler 3 Help File -

Destination file

Normally TASM (the compiler) will output the binaries it made into the same directory as the
source file, with the same name as the source file and the '.obj' extension. CA3 let's you decide
where to put the compiled file and also with WHAT name! This means you can save your ASM
files onto the disk in the disk drive, and that disk you can then run directly on your MSX!

Click on the little folder right to the destination file to select the file. It will try to open a save dialog
where you can specify a file. The file you select does not have to exist in order to let it be saved
to that file, and even when you select e.g. a:\myfile.bin and there's no disk in drive a, CA3 will
still allow you to save to that file!

Compile file when building project

As said, a project in CA3 is just a list of files that need to be compiled. But as not every file in a
project has to be compiled (e.g. because you have some macro's listed in another file, which is
included in your source) you can instruct CA3 to compile the file you've selected or not. This is
only used for building projects. When you build a project, every file that has the Compile file
when building project option enabled will be compiled. You can see if a file has to be compiled in
the list below the buttons. If the green light is ON the file will be compiled during a build, if OFF it
will not be compiled.

In the example project you see four files from which two the LED is ON. These files are actual
programs that you run on MSX. The two files with the LED OFF are included in the corresponding
program file (The first two are together and the latter 2 are together).

These files are not compiled when this project is build, because they are used in the actual
program file. (see figure 34).

Page 27

- TeddyWareZ -
¥ Bntplay.asm

e =10l x|
s owith ML use ir.;l
s with 'CALLsr. —l

ZilentComp .equ O ;s When == 0 the
s doud option wi

#include "bitpmacr.asm"

C:WExamplesbntpmact . asm
of=
Size D 3,337 bytes
Last modified : 15-07-Z001 @ 1l4:09%:E&
;s Start of !
117 lines
StartRom: 4 macro's
.dh "169 lakbels .+ ID bvtes
L O s Init byvte
.ihr StartRomCode A rointer
.l O,0,0,0,0 ;s Reserved

[« | v 4

Figure 34. BNTPMacr.asm is included in the BNTPlay.asm file

Here you see a small block of code in the BNTPlay.asm file. As you can see (looking at the
#include directive) BNTPMacr.asm is included in the BNTPlay.asm file. This means that the
BNTPlay.asm file can call macro's defined in the BNTPMacr.asm file. If this directive wasn't there,
the file would not compile cause it DOES make calls to macro's and labels defined in the macro
file.

Also you can see ONE of the many great aspects of the edit child. You see a little pop-up
window with all kinds of information of the BNTPMacr.asm file. When you float the mouse over a
filename at an include directive you'll get this information after just a really short while waiting!
Just by seeing this, you can tell if the file is the right file (size, date / time) and you also can see
how many lines the file contains, how many macro's are defined and how many labels the file
has... If you would press CTRL whilst floating over the file, the cursor would change into a little
hand, a click would then result in CA3 opening the file!

Great, great, great, now isn't it? More about the edit child later. This was just to let you see the
BNTPMacr.asm file does not have to be compiled, as it is included in the BNTPlay.asm file!

Building projects and compiling files
In the next chapter | will handle the compiling and building of files.

- Chaos Assembler 3 Help File -

3.5. Compiling files and Building projects

3.5.1. The concept

When you use CA3, you use it to create MSX assembly programs / products. That means you will
have to have binaries that are runnable on MSX. CA3 uses TASM to compile the sources you've
created on MSX (see also at the Introduction section of this help file).

There are two ways of compiling. The first one is the compiling of one file. The second one is the
building of projects. The difference between these two is that if you build a project, you just
compile all the files in the project (that need to be compiled that is) after each other. Building
projects should come in handy when you want to make sure you have the newest compiled
binaries of every file. And it just is a lot easier than compiling each file separately.

CA3 has a really fancy looking compile window which will tell you what's happening during the
compilation of one or more files.

3.5.2. Compiling files

Of compiling and building projects, you will probably use the compile option (for one file) the
most. Because you always work on one file at a time, this option is there to compile just that file.
There are two ways of compiling the file you are working on. First of all is via the Compile button
of the project manager. If you press that button, the file you've selected will be saved if that's
necessary, and after that a nice compilation window will appear. This window is the window
where you can see the progress of the compiled file and whether it was compiled correctly (as
shown in figure 35). The second way is via the main menu. The option Project > Compile
'filename.asm’ will compile the active edit child. This option is also available on the tool bar and
can also be executed by hitting CTRL+F9 in the active edit child... This is quite easy, whilst you
are editing, you can compile real fast by just hitting CTRL+F9.

Page 28

- TeddyWareZ -

Compiling... Please wait... il #

| Project: C:AEsamples‘\BMTPlay.cap

| Curment; C:AEsamples \Brtplay. azm

| Emors: 0
| Statuz: Making destination file... 0:00
Filenarne | Errors |

C:A\ExampleshBntplay. azm [Mone]

-! Frogress: 100% .-
x

Figure 35. The compiling window

Here you see the compile window in action. | grabbed the image as fast as | could, but | couldn't
prevent the file to already be compiled. In the state you see CA3 is making the destination file.
This already shows the power of TASM. This source file was 4192 lines of code! CA3 first
compiles the file and after that it will create the destination file. If the file you compiled did not
belong to the project you are working on or you haven't got a project open, CA3 will skip the
destination file. The Destination file will be made by TASM itself in the same directory as the
source file with the same name, but with the .obj extension.

There's quite much to see on the screen. Well, the first four text lines should be quite easy to
understand. The list box contains all files which will be compiled in this compilation. The little icon
next to it will tell the status. A little 'V' means 'OK!', a little '?' means that CA3 still needs to
compile this file and a 'X' means that file contained errors...

If you compile a single file like this, the window will disappear as soon as the file is compiled. That
means that if you compile a file using the project manager and the file you want to compile is not
open at that time, this will mean that you can't see what happened and if the file was compiled
correctly...

I've found something to this. If the file is compiled or project is built correctly, the title bar of CA3
will get a green color. If the compilation fails, the title bar will get a red color. If the source is
compiled correctly but creating the destination file failed, the title bar will also get a green color.

If you have the file open when compiling or open the file after the compilation and the
- Chaos Assembler 3 Help File -

compilation failed, you will notice a list under the edit able region of the edit child with the
corresponding source (see figure 36).

Bntplay.asm =10f x|

dec a
jp z,ml.startMusic
dec a
jp z,ml.=stoplMu=ic
dec a
jp =,mwml.haltMusic

L[>

dec a

jr z,;wl.contMusic
dec a

ip z,mwl.fadeMusic
dec a

ip =,wl.paglrrerride
dec a

ip =, psgiwerrideitop ERROR

Lin 0130: Unused data in MSI::_I,Ite of argument. [2]
tasm; Mumber of emrors = 2

Total nurmber of erors; 2

Figure 36. Compiling failed!

Here you see a compilation that failed. I'm not going to explain what that list box exactly does.
That will be discussed later. What | do want to tell is that you might notice that you twice see
there are 2 errors in total. This is done on purpose. First you see the number of errors TASM had.
The Total number of errors count can be higher, because of the fact that creating the destination
file can also result in an error.

3.5.3. Building projects

Building projects is quite the same as compiling just a file. The only difference is that you can
Page 29

- TeddyWareZ -

compile more files at once. This means relaxation for you! You can compile more files at once by
just ONE single click! Or by selecting it in the main menu under Project > Build 'Project
filename’', clicking the build button on the tool bar or just by hitting F9.

Building projects is as you can see really easy. In figure 37 you can see me building the complete
SCC-Blaffer NT tracker (at least the binaries). I've chosen to show Blaffer NT here because it
just has some more binaries than just the replayer. | can show the building of projects better with
this project. | was quite astonished myself too, in CA2 | had to search the right file and hit the
compile button and that for every file. This project has about 15 files with 5 of them to be
compiled. And with just one key (F9) | rebuilt the COMPLETE product (at least the binaries).

Compiling... Please wait... : #

| Project: C:\proghChaoshaSHYSCC Blaffer NT.cap
| Curent; ¢\PROGYChaoshA5Hsb2-repl.asm

| Emors: 0
| Statuz: Compiling... 0:m
Filenarne | Errors |
1(u::'xF'HI:IG"-.EhaDs"-.-'l‘-.SH'xI:ulaf_nt.asm [Mone]
‘fl::HF'FEDG"«Ehaus"«.&SHHst-snng.asm [Mone]
¥ C PROGAChaos A 5HYsb2-repl. asm
? c\PROG\Chaos'aSH\sb2-psge.asm []
? c\PROG\Chaos\aSHYsb2-inem. azm []

- Progress: 403
-

Figure 37. Building a project

As you can see here, CA3 is busy building the active project. It goes SO fast that only one
second elapsed and already 2 files are compiled! OKay, you see three different icons. The first
two indicate that the file is compiled and it also successfully is compiled. You can also see that at
the error column. You can see no errors occurred due to the [none] caption.

The third file is the file that is being compiled at the moment. You can see that by looking at the
blue bar and the 'compile' icon...

The fourth and fifth file are still waiting to be compiled. You can see that by looking at the icon
which has a question mark (?) in it. The three [N/A] captions indicate that the error count is not

- Chaos Assembler 3 Help File -

yet available. Only for files that have been compiled completely the error count will be available
(as you can see by looking at the figure).

Another difference of building a project is that when one or more files that were compiled had
errors, the window will not close automatically. This is done to give you an overview which files
had how many errors (again: Readability). Figure 38 shows that.

Compiling... Please wait... : A

| Praject: C:A\praghChaoshASHYSCC Blaffer NT.cap
| Current: &:\PROGChaoshASH b2 -insm. azm

| Errorz: 8
| Statuz: Done: There are errors._. [8] 003
Filename | Errorz |
‘-f|::'\F'FH:IG'\Ehans'\.ﬂ.SH'\blaI‘_nt.asm [Mane]
\(u::'xF'HDGKEhaus'\.&SH'&st-sung.asm [Mane]
> cWPROGNChaos \ASH zb2-repl. asm 7
‘fpu::'xF'HDGHEhaDs'\.&SH'&st-psge.asm [Mone]
7% o \PROGAChaos A5 Hsb2-insm. asm 1

- Frogress: 100% -

Figure 38. Build failed!

As you can see here, the build failed. I've created some errors in the two source files. In totality
I've created 8 errors as you can see in the window. You also might notice the 'Cancel’ button has
changed to an 'OK' button. This is because the window doesn't close automatically, as was the
story when building a project succeeds or when you compile just one file.

Click 'OK' to close this window. After that there are enough possibilities to view the errors per file
or altogether, as shown in the view menu topic of the main menu chapter.

Page 30

- TeddyWareZ -

3.6. Extra's

3.6.1. The image viewer

Chaos Assembler 3 has a built in image viewer with which you can view all kinds of MSX
images. The image viewer not only can view the images, it also can do a lot of neat other things.
You can see the image viewer in figure 38.

Note: If the image editor is OPEN and ACTIVE, the main menu will have a NEW item: Image
viewer. It'll appear before the Extra item! This menu item has all the tool buttons in it.

- Chaos Assembler 3 Help File -

¥ Image Yiewer - C\MSX4PC,EMULATOR '\ MSX4PC TIA' BAC =10l x|

&S -O -] -

Position: 107, 0O | | 4

Figure 38. The image viewer

As you can see it's a window which is about 90% filled with a box where you can display an MSX
image (as you can see in figure 38, the teddybear is an (Graph Saurus) .SR5 file!).

In the title bar of the window you can see the filename (with complete path) of the currently
loaded image. Below that you see 6 tool buttons. From left to right:

Open image
This button will warp you to an open dialog where you can select an MSX image to load.

Page 31

- TeddyWareZ -

Currently supported types:

Graph Saurus Screen 5 BLOAD files (*.SR5)
Graph Saurus Screen 5 COPY files (*.GL5)
Unknown file format screen 5 (*.CC5)

AGE (DD-GRAPH) files (*.GES5)

Graph Saurus Screen 7 BLOAD files (*.SR7)
Graph Saurus Screen 7 COPY files (*.GL7)
Unknown file format screen 7 (*.CC7)

The image viewer will automatically try to find a palette file (except for GE5 files) and load it. As
Graph Saurus and the Unknown image format both produce 8 palettes in a single file, the image
viewer needed support for that. Luckily that's built in! You can view your images in CA3 as if they
were being showed on MSX! More about this later in the palette part.

Export image

Sometimes it can come in handy to export an MSX image to a PC format image. The image
exporter is for that. You can export your image to a .bmp (windows bitmap) file. There are
enough tools available to convert that image to e.g. a .jpg image which will be perfect for web
deployment.

Zoom in
Often it comes in really handy to zoom in on the current image. That's what this option is here for.
Notice the little down arrow. With this you can quick zoom.

Zoom out
Zooms out on the image (see Zoom in)

Zoom default
Zooms to the default image size (i.e. x1)

Copy palette info to clipboard

This is without doubt one of the most (if not THE most) powerful options of the image viewer.
Remember the times you have made an image and got a paper somewhere and you were writing
down the palette information? These days are over! This button copies the palette information
into a pasteable block of data for your sources. You will NOT have to write ANY palette down
EVER!

You also will see a little drop down arrow to the right of the palette icon. Click this and you'll get
the drop down menu shown in figure 39.

- Chaos Assembler 3 Help File -

v Palette 1 Chrl+1
Palette 2 Chrel+2
Falette 3 Chrl+3
Palette 4 Chrl+4
Palette 5 Chr+5
Palette & Chrl+6
Palette 7 Chrl+7
Palette 3 Chrl+8
Custom palette {editor) Ctrl+9
Import palette Chrl+P

Figure 39. The palette drop down menu.

If you've loaded a full palette (i.e. NOT a .GES5 file or an image without a palette file) you will be
able to click any of the 8 palettes to switch to that palette. If you've loaded a .GES5, these items
just will not be enabled.

The import palette item just opens another open dialog where you can select another palette file.
If you want to edit a palette, CA3 is the right tool for you. Click on the Custom palette (editor) to
be warped to the palette editor, which will be described in the next topic!

More extras of the image viewer
Cursor position
Also a very simple but quite powerful option of the image viewer is the so called cursor location.
Look at the status bar on the bottom of the dialog window, and move your mouse over the
image. The image viewer will tell you exactly at what pixel you are moving now!

Block mode

Okay, we've discussed the palette stuff. What else is a standard action you ALWAYS take
when making a demo? Yes! Writing down coordinates of objects (like fonts and equalizers).
And YES, also THIS will be history from now on!

The image viewer can select blocks and tell you exactly how big it is, where it starts and
where it ends... Try moving the mouse to a certain position in the image and hold the shift
key. Now move your mouse again and see what happens! Also look at the status bar (right
side). Now THAT is what | call fitting the programmers needs! (see figure 40).

Page 32

- TeddyWareZ -
¥ Image Yiewer - C:\MSXZ4PCLEMULATOR \MSX4PC', TIA . BACKUP!

S -9 - -

[Position: 60, 45 |Zoom factor: 7 |Selected: (48, 3d) - (60, 45) (Size: 13, 12)

Figure 40. The block mode.

Here you see the block mode of the image viewer in action. As you can see you can select a

certain block in the image to view some coordinates which can be used in your source pretty

easily! Notice the block has a strange color. This is done to always see the block. A selected

pixel has the inverted color of the original. So by holding shift and moving the mouse you can
select these kind of blocks. Notice the status bar where all information is.

- Chaos Assembler 3 Help File -

3.6.2. The palette editor

Another neat feature of the image viewer is the palette editor. The palette editor can be used to
create your OWN palette. To get to this palette editor, drop down the arrow of the palette tool
button on the tool bar of the image viewer and select '"Custom palette (palette editor)'. If you
click this item, you'll be warped to the dialog shown in figure 41. The palette editor can also be
called by the main menu of CA3 (Image viewer item).

Palette Editor 7 x|

Copy From Image |

Cancel Apply

Figure 41. The palette editor

Here you see the oh so great palette editor. It's really simple. The 16 boxes you see are the
current colors (as MSX has 16 colors). Move the mouse over one of them and the cursor will turn
into a hand point cursor. When you click it, the current index (the color you will be editing) will be
set to THAT color. You can verify that by looking at the most left box of the four little boxes in the
upper right corner of the dialog window. To change the red, green and blue intensity of the color,
left or right click on one of the three most right boxes (which show the current intensity of that
specific color). Left to increase the intensity and Right to decrease it. If the intensity would
exceed it bounds (bounds are 0 through 7), it will be clipped to the (respectively) highest (7) or
lowest (0) intensity.

Page 33

- TeddyWareZ -

Copy from image

Copies the palette data from the current image. In this way you can easily change the palette
according to the original palette. The palette editor will always start with the default MSX palette.

OK
Applies changes and closes the dialog (see Apply)

Cancel
Closes the window without saving the palette information.

Apply
Sets the image palette to the palette you just edited.

3.6.3. The sprite editor

On MSX sprites are often used in games and demo's. In games they're really a must and in some
demo's you see some pretty impressive sprites come by. Making sprites however is quite hard,
as you'd have to make them with some little editor probably written in BASIC and what if you
would have more colors in the sprite or even more colors on one line? This frankly is quite hard to
make, because there are no good editors for that and thus people probably go to their graphic
editor, make a sprite and from there of write down all colors and patterns. But if you have more
than one color on a specific line, you'd have to split up the sprite in two sprites etc. etc. All in all,
making a COOL looking sprite on MSX is quite hard.

These days are over. Chaos Assembler is proud to present (probably) the greatest (if not, the
only) sprite mode 2 editor! With CA3 you can create beautiful sprites! More colors on one line
are no problem. Copying the sprite data into Z80 data structures is NO PROBLEM. That sprite
data is ready to be used in your applications!

Up to the sprite editor then. In figure 41 you see the sprite editor.

- Chaos Assembler 3 Help File -

Sprite Editor -0l x|
FRIENENE R

&

(N EONCHE

mIDIDIIIII

& B i

|Pnsitinn: 2, 0 116} \Zoom factor: 22 =

Figure 41. The sprite editor

The sprite editor also has a main menu extension in the main window of CA3, just like the
image viewer has. You can find it when the sprite editor is active and it's called 'Sprite editor'...

The sprite editor is quite easy to use. The open button (folder icon) let's you open an MSX image
as a sprite. It'll take the first 8*8 pixels of the image.

The save button is there to export the sprite to a bitmap image. Then there's the zoom buttons
again and the palette button (see image viewer).

Sprite mode selection

You can decide to create an 8*8 or a 16*16 sprite mode using this drop down box. If you select
another mode, the sprite you have at that moment will be preserved as much as possible. That
means that if you switch from 16*16 mode to 8*8 mode a quarter of the sprite will be preserved
and vice versa the complete sprite will be preserved.

Color selection

You can see 17 boxes at the left side of the screen. The first sixteen represent the colors on
MSX. The seventeenth color (a bit green) is not actually a color. It's more a virtual color. It
represents the transparency of the sprite. A sprite is build up out of pixels. And the pattern says
there's a pixel, or there's not one. This color is for that. When you see this color in a sprite, it'll

Page 34

- TeddyWareZ -
mean that on MSX this pixel will not be seen and thus have a transparent color.

Below those 17 boxes you see another box. This box shows the currently selected color.
To select a color, click on one of the color boxes. The current color immediately becomes this

color. You can also change the intensity of a color. By clicking right, a little window will pop up in
which you can change the intensity of the color, as shown in figure 42.

€ Sprite Editor =10]
ﬁ'n|e\|ﬁv||8*83prite j

HE

W]

ML

Il

W]

B[]

M O

e

I =
Position: D0, 4 {16) Zoom factor: 22 e

Figure 42. Changing intensity of a color

Here you see I've changed the fifteenth color of the palette from gray to blue using the color
change dialog. The three boxes represent respectively the red, green and blue intensity of the
color. By clicking left or right on them you'll change the intensity of that index.

Making a sprite

With this knowledge, it's quite easy to make a sprite. The big green part of the window you see in
figures 41 and 42 is the actual sprite. Clicking on it will change the color of the selected pixel
(where the mouse floats over) to the current selected color. By clicking right on any specific pixel
will result in the current index to be changed to the color that pixel has. You can put as many

- Chaos Assembler 3 Help File -

colors in the sprite as you like, but remember, this will also increase the sprite count the sprite
would take create it on the MSX...

It's THAT simple. More about this | can't tell you...

The other tool buttons
In figure 43 you can see | made a little sprite myself.

% Sprite Editor =10 x|
FH e ® -

H B

O[]

H B

M [

H &

]

B O

10

=

B s e ;
|Pn:|5it,inn: wh 116} Zoom factor: 25 o

Figure 43. A little example sprite.

Here you see I've created a sprite. | guess you'll see this sprite can't be made using one MSX
sprite. By using the little button with the 'i' caption, CA3 will calculate how many sprites this on
MSX will take in sprite mode 2. By looking at this sprite you see three colors (black, white and
purple).

And the first thing you probably think is that this sprite will take three sprites on MSX. But this is
not true. This sprite can be made using TWO MSX sprite mode 2 sprite.

As every line can have it's own color, the first sprite will contain all black pixels. The second
sprite will have the second and third line filled with white, the fourth with purple, the fifth with
Page 35

- TeddyWareZ -

white again, the sixth will be purple and the seventh will be white... In that way only two sprites
will be necessary! And pressing the 'i' button will result in CA3 showing the sprite will take two
sprites.

Using the left button will result in the complete sprite to be filled up with the current color. And
the middle button is the most powerful. If you click this, CA3 will create pasteable Z80 data
structures for the patterns and colors of this sprite. This code can be pasted in your source
and is READY TO USE!

3.7. Editing sources

3.71. MACRO'S.ASM ?

What is macro's.asm? You probably saw this filename a few times earlier in this help file.

The 'macro's.asm’ file is delivered with CA3 and has all kinds of standard defines and labels in
it... With this macro's.asm file you can e.g. call any bios call (MSX1 or MSX2) and easily access
the BDOS routines. It also has some macro's defined, stuff like setting palettes, copying ram to
vram, setting VRAM pages, reading sectors from disk etc. etc.

You should really take a look at this file. This file also is BY DEFAULT included in a new source

file. TeddyWareZ used it in all their products and it just is really comfortable. Also you can update
this file just to let it fit your needs. This file really is the basis of a new file.

- Chaos Assembler 3 Help File -

3.7.2. Code completion

You can of course just type away in the editor, and view all those nice colored keywords and
numbers, strings and all other things, but you want more, now don't you? of course you want
that... Get ready to be astonished.

What is code completion?

Code completion is never before shown in any MSX assembler. It does what you probably think it
does, it completes code for you. Code completion comes in especially when you have long label
names from which you can't remember the complete name anymore. Also for macro's, this can
come in handy... The basis is that you type the first part of a label and call upon the code
completion, the code completion will then make a list with ALL macro's and labels it can find
(EVEN the ones in an included file!). After that list is made, code completion presents the list
and will select the first item that corresponds to what you typed. After that (if you had the right
label) you can press enter and code completion will fill in the label or macro on the appropriate
place.

That's the basis of code completion. An example (see figure 44):

Bntplay.asm = o] 52
1d ix, $475a s Illegal Ffunction call error A:J
zall §159
)
rop hl
or a
ret
playNotlwvail:
1d hl,onlyPlayText
jp nothvailbone
stopNotlhwvail:
1d hl,onlySt
Jp nothvaillD
open [bntpmacr._ zasm] <Label: 21>
pauseMNotivail: org.prim <Label: 334>
1d hl,onlyPa org.sec <“Label: 3836=
.
OriginalErrHand <Label: 1559%
notivaillone: Otherdrive <Lahel: 1457>
1d a,1
call ShowText =
SN I— ' 4

Figure 44. An example of code completion

Page 36

- TeddyWareZ -

Here you see the code completion in action. | typed Id hl,onlySt, cause | knew the label started
with that. After that | pressed ctrl+space which invoked the code completion and the code
completion did the rest. As you can see the code completion thinks it should be the label that's
selected and in this case that's the right one. Pressing enter now will result in code completion
completing my label. Actually it replaces my already typed part of the label, so that case
sensitivity is also taken over. If i kept typing after the onlySt text, code completion would try to
find a new most appropriate label and select it. Using the arrow keys will result in selecting
another label from the list, just as page up and page down. Now that's what | call FITTING THE
PROGRAMMERS NEEDS!

TeddyWareZ is VERY proud of this feature. Try looking at the figure. Look at the second item you
see... You see that THAT label (open) is located in bntpmacr.asm! That's a completely other
file just included in this source! Code completion will scan that file too!

You can also see at what line the label is found, so pressing ALT+G (Goto line) you can easily go
to that line.

3.7.3. Code tool tips

Is Id hl,(ix+1) allowed? What does neg do? How fast is scf? How many bytes would Id a,(ix+2)
take? These are just some questions you and | probably sometimes have. Though you maybe
an experienced Z80 assembly programmer, you probably have Z80 instruction tables and timings
on hard copy when you're coding. When you think of something that raises a question about the
syntax or timing, you look it up in those papers.

This will be history with CA3. TeddyWareZ is proud to introduce Code Tool Tips (CTT's). With
CTT's you can get all kinds of answers to your question... By pressing ctrl+shift+space after you
typed (a part) of a MNEMONIC, you can give a call upon the CTT's to show you some info about
that MNEMONIC as you can see in figure 45.

- Chaos Assembler 3 Help File -

® Bntplay.asm s i 10l x|
call ml.SEMLoad. 1 =]
i
ret
ml.3BKLoad:
1d =,
or @ LI A, [VALUE] - Load accumualator
Jjp nz
Possible Walues: L | T
Any S-bit registers (A B CD EH L) 11 4
1d 2, any B-bit mumber (0. 255} 2| =
14 (H
I — Load Interrupt Vectaor i
1d th - Load Memory Befresh g |1 9
14 d (nmn) - Load contents of address nn 3113
e (BC) — Load contents of address EC o Cod T
ld be (pEy - Load contents of address DE 1|7
1dir (HL} - Load contents of address HL 1 7
(Ix¥+td) - Load contents of address IXK+d 3112
call (IT+d) - Load contents of pddress TH+d 3| 12
ret
ml.starclusic:
1 - AWl e TH T - 4 =

rr - v 4
Figure 45. Code Tool Tips!

| don't think | have to tell really much. Notice the L | T structure... The L stands for Length and
displays the number of bytes the MNEMONIC will take. The T stands for Time and displays the
number of T-states that instruction will take.

That's it, have fun with it!

3.7.4. Other tool tips

Label recognition

CA3 has build in more tool tips like the CTT's discussed in the previous topic. One of these tool
tips are the label recognition tips. CA3 can recognize labels and let you view what line these
labels are... See figure 46.

Page 37

- TeddyWareZ -
* Bntplay.asm = =10f x|

call ml.23BMLoad. 1

I B

ret

mwl.3EBELoad:
1d a, (rmasicPlay)
or a
jp nz,ml.errioz
wml.errliZ = Label
1d a,1 Line: zE7
1d [(Ml1Menu) ,a

1ld hl, fch
1ld de,driwve
ld be. 12

4 | v 4

Figure 46. CA3 recognizes labels!

Here you can see the label recognition in action. As you can see the ml.err102 label is located at
line 257. The most powerful option of label recognition is yet to come. Try pressing CTRL while
moving over the label. The cursor will change to a hand point. If you click now (whilst holding
CTRL) CA3 will jump to the line where this label is declared! That is something REALLY
powerful. Maybe even MORE powerful is this: After you've jumped to a label, try hitting
CTRL+BACKSPACE. CA3 will then RETURN to the position you were BEFORE you jumped to
the label!

File recognition
Another thing CA3 has built in is file recognition. This works almost the same as the label
recognition, difference is this is for included files. Figure 47 explains better.

- Chaos Assembler 3 Help File -

Srestasm_______ B [=1 S

s Teddylares MSX E80 source file. 2

s Prog: First test program for FAT.TW.SET 3...
;s Coder d-Ffader*Twd.
;s Dater Ffebruary =24, 2000

;s oamntr pone.
s coded in Chaos Assembler 2.0

S0} 2000 TeddylWareD!

Fincluwde "£3 mact .asm"

#include "macrE's.asm"
C:hprogy ChaoshASH \macro's_ asm
.org $400
Size : 15767 bytes
Last modified : 10-09-Z001 @ 14:10:4Z2
.dh ife
.thf starit5s lines
l& macro's
Z48 lahels

startProgram:
BNTFlay(init3CC)

1A = feFaddah

0 — v 2

Figure 47. CA3 recognizes files!

Here you see the file recognition in action. It works exactly the same as the label recognition.
Move your mouse over a filename. After a short while a tool tip will be shown with all kinds of
information about the file! By holding CTRL and clicking when the mouse has changed to a
hand point CA3 will open the file in a new window or pop-up the window if the file already is
open. It's THAT simple...

Page 38

- TeddyWareZ -
3.7.5. Math evaluation

Yet another great feature of this editor is the math evaluation. It does exactly what you think it
should do, it evaluates things. Mathematical things to be exact. The math evaluator will also
pop-up just like the other tool tips and is actually a tool-tip too, but this one deserves a whole
topic. Math evaluation is almost a must for every programmer around the world. How many times
did you see a hexadecimal number and wanted to convert it to a decimal number or saw a binary

number added to a hexadecimal number and you needed the result of that? Probably pretty often.

Well CA3 will do this FOR you... Check figure 48 for that!

¥ test.asm =10l x|

s TeddyiWares MEX FaQ source file. <

s Prog: First test program for FAT.TW.SET 3...
;A Coder d-Ffader*TwE.
s Dater Ffebruary 24, 2000

Socommtr none.
s coded in Chaos Assembler 2.0
Ao0C) 2000 TeddylWareZ!

finclude "f3 macr.asm”
#include "wacro's.asm"

.org $4000 - §7

$4000 Hex 16 bit
.dbh $fe #07 Hex & bit

. =tar
1384 - 7 = #15377 = :3FF5

#l63584 = 30100000000000000
#7 = %¥00000111

startProgram:
BHTPlay(initaCC)

1A = 2 Fadah
| M 4

Figure 48. Math evaluation

here you see the math evaluation in action. As you can see CA3 will split up what it finds into
- Chaos Assembler 3 Help File -

small pieces of numbers first. CA3 will show all those numbers in hexadecimal, decimal and
binary. After that the math evaluator comes in action. It'll calculate the sum of what you selected
or what CAS thinks it should calculate (In this case no text was selected and CA3 has determined
that you want to see the result of $4000 - $7. At the bottom of the tool tip you see the sum and
the result in decimal and hexadecimal...

As | told, if you select a part of text in the file, the math evaluator will only evaluate THAT part.
This can come in handy if CA3 can't determine the sum or does it wrong (See figure 49)...

¥ test.asm =10l x|

s Teddylares MSX E80 source file. 2

s Prog: First test program for FAT.TW.SET 3...
;s Coder d-Ffader*Twd.
;s Dater Ffebruary =24, 2000

;s oamntr pone.
s coded in Chaos Assembler 2.0
S0} 2000 TeddylWareD!

Finclude "£3 macr .asm"
#include "macro's.asm™
.org BRIl - 57
$4000 Hex 16 bit = $163584 = 30100000000000000
.dbh ife
. startProgram, endProgram, startProgram

startProgram:
BNTFlay(init3CC)

1A = feFaddah

0 — v 2

Figure 49. Math evaluation on a selected part of the text.

| didn't want the complete sum, | only wanted the $4000. By selecting that what you want and
calling upon the evaluator, it'll evaluate the stuff you selected!! Quite powerful eh?

Page 39

- TeddyWareZ -
Figure 50. The edit child pop-up menu

The only thing | want to say is that you can show and hide the error list box shown when you're
source had errors... By pressing F12 or selecting the item in this pop-up you'll toggle the
compiler error list box.

The edit child status bar
The edit child has an extensive status bar which gives you information whilst you are typing. It's
divided into three parts, from which the second part is divided into three parts itself.

The first part (on the left side) gives you information about the cursor position. It shows the
current cursor position in horizontal, vertical way. On the right side of this part you see a

3.7.6. In general number between brackets... This number is the ASCII value of the character of the cursor. In
figure 41 it's 49. ASCII 49 = character '"1' and as you can see in the image, the cursor is located
at the 1 of 1999...

Undo / Redo
The editor can undo your changes up to 1024 levels... You will probably use this REALLY The second group of status info's are the status of the three well-known keys num-lock,
often. The shortcut to undo a change is CTRL+Z and to redo the last undo you can press caps-lock and scroll-lock. If one of these lock keys is enabled, the text will be visible in the
CTRL+SHIFT+Z. Undo and redo is also available on the edit childs tool bar, in the main menu status bar. Else nothing will be shown.

and on the pop-up menu of the edit child.
The third part of the status bar has MORE than one purpose. If NO text is selected in the edit
The pop-up menu phild, this part of thg status bar.wiII displgy'the insert gtatus. If it. reads 'Inse'rt', then insert mode
In figure 50 you see the pop-up menu of the edit child. No explanation is necessary, cause it is on and no text will be overwritten. I'f this |.s.‘0v'erwr|te' text will be overwritten.
explains itself and every item in the menu is discussed extensively. If after this insert status it also reads ‘(Modified)' then the file you are editing is modified and
thus save able (see figure 51).

e e On the other hand, if you have some text selected_, thi_s statl_Js bar will read HQW many bytes
you have currently selected. As soon as no selection is available anymore, this will change to
T4 Redo Shift-+Ctr4+2Z the default 'insert' status info.
Copy kvl
o cut Chrl+
FR Paste el
7% Delete
Select Al CErl-a,
Arrange kba ik Alk+F
Insert kemplate k4]
Save Chrl+5
Compile ‘Brkplay.asm'... Ckrl+F3
Return to lask position Alk+BkSp
Show compile errors Fiz

- Chaos Assembler 3 Help File - Page 40

- TeddyWareZ -

¥ Chaos Assembler 3 - v0.9960 M=l E3

File Edit “ew Search Project Templates Extra Window Help

ﬂD EIﬁHI..,.:%: ﬂ“hﬁc}é}d“%EmD o
" =10l x|

S Teddviiare? MEX a0 source file. il

& Prog: 5CC Blaffer NT BASIC replay ROM code with =slo
;s Coder d-Fader*Twh.

; Dater September &6, 1825957

S cmnt: none.

s ooded in Chaos Assembler 2.0

s i) |1999 Teddylares:

p _nri S4000=-"7 _ILI
o 2 R

|Position: 7, 11 {499 [NUM |CAPS |SCRL |Insert (Modified)
Figure 51. The edit child status bar (see at the bottom of the image)...

Bookmarks
CAS support bookmarks. A bookmark is in fact a cursor position in your source. To make a
bookmark go anywhere in your source, press CTRL+SHIFT+[number]. A visual confirmation
you can see at the left side of the edit child. The visual confirmation (see figure 51) will be the
number you pressed. You can only set one bookmark per line. Press CTRL+SHIFT+[number]
again on the same line to REMOVE the bookmark. To jump to a specific bookmark, press
CTRL+[number] where [number] again is the index of the bookmark. Try to get used to
bookmarks, they are REALLY handy! Per edit child you can make 10 bookmarks (0, 1, 2, 3, 4,
5,6,7,8and9).

- Chaos Assembler 3 Help File -

Bntplay.asm =10] x|
SilentCamp .equ O ; When <> 0 the |
;s loud option wi—

#include "hbntpmacr.asm'
of= .eqm 5000
A Start of TROMT code:

8 |StartRom: |

.dh "AE" S ID byvtes
S O s Init byvte
3l v StartRomCode s Pointer
I .dw 0,0,0,0,0 s Reserved
.dh rr rr
.dh r r
.dbh " ZCC Blaffer NT ¥ -

Figure 51. Bookmarks!

Code templates

Code templates are already pretty extensive described in the Code templates tab of the
settings screen and the UNREGISTERED DEMO VERSION. This topic will describe how to
implement the code templates in your source code. There's not much to it, but it just has to be
described...

To insert a code template, type the shortcut of the code template and press CTRL+J to find the
implementation of it and insert it in your code. Another way to implement a code template in
your code is by selecting the one you need from the Template menu (see figure 52).

Page 41

- TeddyWareZ -

® Untitled 1 O] x|
s TeddylareZ M5X ES0 source file. =
;s Prog:
;A Coder d-Fader
s Date:
S ochurt:
s Coded ip TeddyvWares' Chios Assembler 3
so0C) 2001 TeddviWareZ!
#include "macro's.asm"
LOrg §9000 - 7
Jdh ife
S startProgram, endProgram, startProgram
startProgramn:
docapy i
endProgratm:
-
| M 4

Figure 52. Inserting code templates.

By pressing CTRL+J at this moment in your source, the code template with shortcut docopy
will be inserted into the source (if available that is). That's all | can tell about templates, they're

just easy to use neat features!

- Chaos Assembler 3 Help File -

Page 42

- TeddyWareZ -

4, Other

4.1. Trouble shooting

This is a pretty hard topic, as we don't know what problems users will have and this is the first

version of the help file of CA3. Nevertheless we have found some things that fit in the trouble
shooting section...

Problems using macro's

I'm sure | declared my macro correctly, but TASM gives an error like 'line 0023:
unrecognized directive. (([Parameter name]))’

This is a problem we've encountered too... This is a bug (?) in TASM. To solve this be sure
your definition of the macro does not contain any spaces between the name and the
parameters... example:

#define MyMacro (Parameter)
This will generate an error, because there's a white space between the MyMacro and the '(* of
the parameter. To define it correct, define it like this:

#define MyMacro (Parameter)
This is the correct definition of a macro.

I'm sure I declared my macro correctly, but TASM gives an error like 'line 0023: Macro
expects args but none found’

This is almost the same problem as the problem described before, though in this case you DID
define the macro correctly, but called upon the maco in a wrong way. You probably called your
macro like this:

MyMacro (Parameter)
This will generate an error, because there's a white space between the MyMacro and the '(* of
the parameter. To call it correct, implement it like this:

MyMacro (Parameter)
This is the correct implementation of calling upon a macro.

I'm sure | declared my macro correctly, but TASM gives an error like 'line 0023:
unrecognized instruction. (IMYMACRO(PARAMETER))'

This error occurs because the implemantation of macro's is CASE SENSITIVE, even if the
option of case sensitivity is disabled! Check the case of the macro name you call upon...

- Chaos Assembler 3 Help File -

Problems using labels
I'm sure | typed the labelname correctly, still | get an error like: ‘line 0023: Label not
found: (LabelName)'
This error occurs when you call upon a label with the wrong CASE SENSITIVITY if the 'Ignore
case in labels' option in the settings screen is DISABLED. To get rid of this error, go to the
settings screen, click the assembler tab, enable the option 'Ignore case in labels' and click OK.

I'm getting errors like 'line 0023: label value misalligned. Gp)’
This error occurs when you do not have any WHITE SPACES at the left side of a line and
directly typed an instruction like:

Labell:
jp Labell

This generates an error, because the jp label1 is an instruction and didn't start with a white
space. It is generally recommended to start lines with an instruction with a TAB character!

4.2. The TeddyWareZ recovery system

Another neat feature of CA3 is the TwZ recovery system. This one comes in action when CA3
becomes instable. Programs that become instable are a pretty issue since the introduction since
Windows '95. Also, remember CA3 is really big and | can't help it, but | can assure you there are
bugs in it like not freeing memory right etc. TeddyWareZ found a way to detect that and let you
decide what to do. This includes that CA3 can save modified sources after it became instable
(see figure 44).

Page 43

- TeddyWareZ -

TeddyWare? recovery system... e El 4_3_ Tips & Hints
Application recovery
Chaos Assembler 3 has become instable...
. Hints
EFEE; :Laeisslas-nla—wlfszaxriT:T;méT’rur = Almost everywhere in CA3 you can get HINTS and TOOLTIPS. These are to help you identify
' certain objects.. Just by moving the mouse over objects, you'll DIRECTLY see a hint (if available)
Murmber of childs: 5 in the status bar of the main window... Check out figure 53 to see what | mean.
Child 0 = TfrmEditChild
:33534“;; S04 ¥ Chaos Assembler 3 - uO.00460 Mi=] E3
- wshormal File Edit Miew Search Projec x A
- ~u -Err -
1
] “ O-=-0 “ & Mew Add Femove
This description is probably not very 'descriptive’. Please check out :
the support site of CA3 for updates or e-rmail us with this description ?,’: i t:“pr:uject, EEREan
and tell us what you were doing. B HEE Properties Build o T
e-mail: report@TeddyWarez oib.net 2 File | Location il
support: hitp:/fTeddyWarez . cib.net/Ca3 support 5 @ Britplay. azm C:MEx:
S Progr 5CC Bl @ MI_macnt. azm C:hExamples | oo
What action would vou like to take? A Coder d-Fade @ MI_brtpl.azm C:AExamples
Save and try to terminate application (Highly recommended) j ;s Date: Nepten @Bntpmacr.asm C:AEwamples
rocrhnt !
oK |
Figure 44. The TeddyWareZ recovery system. * coded
If you get this screen, please check the support site for updates and / or e-mail us the description

in the little text box. By just clicking on of the links you'll be warped to your e-mail client or your
HTTP browser.

|add an external file to the project... o

Figure 53. Hint and tool tip

Hot keys

| can not tell often enough that CA3 has a big amount of hot keys (also known as key
combinations). Hot keys are there for you. Most items in the main menu of CA3 have a hot key.
That means that those items can be called using the keyboard. e.g. The Project > Compile
'filename' menu item can be called by using the hotkey CTRL+F9... Get used to these key
combinations. It is recommended to print out the key combinations section of this chapter...

- Chaos Assembler 3 Help File - Page 44

- TeddyWareZ -

DB, DW and DS

As TASM wants db, dw and ds as .db, .dw and -fill, adapting sources from other compilers is
quite a lot of work. You can of course replace all occurrences of these directives to fit TASM, but
then you'll lose the compatibility of MSX compilers. If you define these things then you can use
DB, DW and DS in your sources and TASM will auto convert them to .db, .dw and .fill for you:

#$DEFINE db .db
#$DEFINE dw .dw
#DEFINE ds .fill

The only disadvantage is that the CA3 syntax highlighter will not recognize these defines as .db,
.dw and fill...

4.4, How to ...?

1) How to set the destination file?
To set the destination file for a file in the project, go to the project manager, select the
file where you want to set the destination for and click the properties button. Now click
on the little folder right to the text of the destination file.

2) What to do if an access voilation occurs?
If an access violation occurs, remember what you were doing and press OK. If CA3 after
that becomes instable, the TeddyWareZ recovery system will take over.

3) How to dock the project manager?
To dock the project manager drag it to the border of the CA3 screen, and drop it..
You'll see the manager will dock to one of the borders.

4) How to get data from the sprite editor in your source?
There are 3 ways to get the sprite data onto the clipboard
e ctri+c
e The button in the sprite editor, (2 documents button)

- Chaos Assembler 3 Help File -

e Main menu item 'sprite editor’, copy sprite to clipboard... The sprite editor has to be
active to make this menu item become available.

In your source you can press ctrltv or, right-mouse+past, this will insert the data into
your source.

5) How to get palette data in the image viewer?
There are 2 ways to get the palette data onto the clipboard

e right mouse click on the image + copy palette to clipboard
o -shift+ctrl+c

In your source you can press ctrltv or, right-mouse+past, this will insert the data into
your source.

4.5. Key combinations

Main window

CTRL+N New document (new file)

CTRL+SHIFT+N New document (new file) and add to project
CTRL+O Open a file (Normal file or project)

CTRL+S Save the active edit child

CTRL+P Print the active edit child (will show a print preview first)

CTRL+F4 Close the active child (edit child or not)
CTRL+F12 Close all open files

CTRL+SHIFT+F12 Close all open files and close the project too
CTRL+ALT+S Toggle standard tool bar

CTRL+ALT+E Toggle edit tool bar

CTRL+ALT+W Toggle window tool bar

F11 Toggle project manager
CTRL+F3 View last compiler output
F10 View all errors of the last compilation

CTRL+SHIFT+L View latest list file of the active edit child
Page 45

- TeddyWareZ -
CTRL+SHIFT+ENTER Add external file to the project

CTRL+F1 Add active edit child to the project
CTRL+F2 Remove active edit child from the project
CTRL+F9 Compile the active edit child

F9 Build the active project

CTRL+SHIFT+E Edit code templates
CTRL+F8 Open a new sprite editor

CTRL+F10 Open a new image viewer

SHIFT+F11 Open the chaotic media player

ALT+S Open preferences / settings window

ALT+F Arrange to fit all open child windows
CTRL+DOWN Minimize active child window

CTRL+UP Maximize active child window

CTRL+= Restore active child window (i.e. normal size)
Edit child

CTRL+SPACE Call upon code completion

CTRL+SHIFT+SPACE Call upon code tool tip

CTRL+SHIFT+[number] Set bookmark [number] on current line ([number] =1..0)
CTRL+ [NUMBER] Go to bookmark [number] ([number] =1..0)

CTRL+J Call upon the code template implementation
CTRL+RIGHT Go to next word

CTRL+LEFT Go to previous word

CTRL+Z Undo last change (up to 1024 levels)
CTRL+SHIFT+Z Redo last undo

CTRL+X Cut selected text to clipboard

CTRL+C Copy selected text to clipboard

CTRL+V Paste selected text from clipboard
ALT+BACKSPACE Return to last position (before a label jump)
CTRL+F Find text in edit child

CTRL+SHIFT+F Find text in files (files in the active project and / or open files)
CTRL+R Find text in files and replace with other text

F3 Find next occurrence

SHIFT+F3 Find previous occurrence

CTRL+E Incremental search

ALT+G Go to line number...

The project manager

CTRL+UP Move selected file up (earlier build)
CTRL+DOWN Move selected file down (later build)
CTRL+SHIFT+UP Move selected file to top (first build)
CTRL+SHIFT+DOWN Move selected file to bottom (last build)

- Chaos Assembler 3 Help File -

CTRL+N New file and add to project

CTRL+A Add external file to project

CTRL+DEL Remove selected file from the project
CTRL+ENTER Change file properties (selected file)
CTRL+F9 Compile selected file

F9 Build the project

The image viewer

ENTER Load image

CTRL+S Export (save) image on screen

CTRL+P Import palette

CTRL+I Zoom in on image

CTRL+U Zoom out on image

CTRL+D Zoom to default image size (zoom x1)

CTRL+1..8 Change palette to palette x (where x = 1 through 8).
CTRL+9 Call upon the palette editor

MOUSEWHEEL Scroll image vertically

CTRL+MOUSEWHEEL Scroll image horizontally
SHIFT+MOUSEWHEELZoom in or out on image
SHIFT+MOUSEMOVE Mark a block

The the sprite editor

ENTER Load image

CTRL+S Export (save) image on screen

CTRL+P Import palette

CTRL+I Zoom in on image

CTRL+U Zoom out on image

CTRL+D Zoom to default image size (zoom x1)

CTRL+1..8 Change palette to palette x (where x = 1 through 8).
ALT+I Display sprite information

CTRL+C Copy palette information to clipboard

ALT+C Copy sprite information to clipboard (pattern and color)
(SPRITE EDITING)

LEFT CLICK Change the current pixel color the index color
RIGHT CLICK Change the current pixel color to the index color
(COLOR SELECTION)

LEFT CLICK Change the index color to the color selected

RIGHT CLICK Change the intensity of the color selected

- TeddyWareZ -

Chaotic Media Player That's it...
ENTER Add songs to list

CTRL+LEFT Go to first song in list

CTRL+RIGHT Go to last song in list

Z Play song

X Stop playing

C Pause / Continue playing

\% Go to previous song in list

B Go to next song in list

DEL Remove selected songs from the list

4.6. Support

There's support in three ways. You can visit the CA3 section of our homepage, you could e-mail
us and we're even available by snail mail!

WWW: http://TeddyWareZ.cjb.net/CA3
e-mail: info@TeddyWareZ.cjb.net

Snail mail:
TeddyWareZ
Jan Palachweg 17
9403 JS Assen
The Netherlands

- Chaos Assembler 3 Help File - Page 47

- TeddyWareZ -

5.

5.1.

Registers

Z80 Information

Instruction set

The following registers are available:

A,B,C,D,E 8-bitregisters

AF 16-bit register containing A and flags

BC 16-bit register containing B and C (BC=Byte Counter)
DE 16-bit register containing D and E

HL 16-bit register use for addressing (HL=High/Low)
F 8-bit flag register

IX, 1Y 16-bit index registers

PC 16-bit Program Counter register

R 8-bit Memory Refresh register

SP 16-bit Stack Pointer register

Addressing Methods

The following addressing methods are available:

n Immediate addressing (8-bit)

nn Immediate extended addressing (16-bit)

e Relative addressing (8-bit; PC=PC+2+offset)
[nn] Extended addressing (16-bit)

[xx +d] Indexed addressing (16-bit + 8-bit)

r Register addressing (8-bit)

[rr] Register indirect addressing (16-bit)

b Bit addressing

p Modified page 0 addressing

Flags

The following flags are available:

S Sign flag (bit 7)

Z Zero flag (bit 6)

H Half carry flag (bit 4)

- Chaos Assembler 3 Help File -

P Parity/Overflow flag (bit 2)
N Add/Subtract flag (bit 1)
C Carry flag (bit 0)

Symbol Descriptions

These symbols are included in the instruction list.

b One bit (0to 7)

cc Condition (C,M,NC,NZ,P,PE,PO,Z)

d One-byte expression (-128 to +127)
dst Destination s, ss, [BC}, [DE], [HL], [nn]
e One-byte expression (-126 to +129)

m Any register r, [HL] or [xx+d]

n One-byte expression (0 to 255)

nn Two-byte expression (0 to 65535)

pp Register pair BC, DE, IX or SP

qq Register pair AF, BC, DE or HL

qq’ Alternative register pair AF, BC, DE or HL
r Register A, B, C,D,E,HorL

rr Register pair BC, DE, IY or SP

S Any register r, value n, [HL] or [xx+d]
src Source s, ss, [BC], [DE], [HL], nn, [nn]
Ss Register pair BC, DE, HL or SP

XX Index register IX or IY

Flag Field Values
The each flag field contains one of the following:

Flag unaffected

* Flag affected
0 Flag reset

1 Flag set

? Unknown

Instuction List

Flags
Mnemonic SZHPNC Description Notes
ADC A,s ***yQ* Add with carry A=A+s+CY

Page 48

- TeddyWareZ -
ADC HL, ss
ADD A, s
ADD HL, ss
ADD IX,pp
ADD IY,rr
AND s ***P00
BIT b,m ?2*120-
CALL cc,nn
CALL nn
CCF

CP s
CPD
CPDR
CPI
CPIR
CPL

DAA

DEC s
DEC xx

*H VO
***VO*
__?_O*
__?_O*
__?_O*

—-——1-1-

***VO_

***VO_

(HL)

2%221-
21221~
2%221-
21221~

Add with carry
Add A=A
Add
Add
Add
Logical AND
Test Bit mé& {
Conditional Call
Unconditional Call
Complement Carry Flag
Compare A-s
Compare and Decrement
Compare, Dec., Repeat
Compare and Increment
Compare, Inc., Repeat
Complement
Decimal Adjust Acc.
Decrement
Decrement
Decrement
Disable Interrupts
Dec., Jump Non-Zero
Enable Interrupts
Exchange
Exchange
Exchange
Exchange
Exchange
Halt
Interrupt Mode
Input
Input
Increment
Increment
Increment
Increment
Increment
Input and Decrement
Input, Dec., Repeat
Input and Increment
Input, Inc., Repeat
Unconditional Jump
Unconditional Jump
Unconditional Jump
Conditional Jump

DE<
qg<

- Chaos Assembler 3 Help File -

HL=HL+ss+CY

+s
HL=HL+ss
IX=IX+pp
IY=IY+rr
A=A&S
2"b}
If cc CALL
-[SP]=PC, PC=nn
CY=-CY
A-[HL], HL=HL-1,
CPD 'til A=[HL]
A-[HL], HL=HL+1,
CPI 'til A=[HL]
A=-A
A=BCD format
s=s-1
xx=xx-1
ss=ss-1
B=B-1 'til B=0
[SP]<->HL
[SP]<->xX
AF<->AF"'
->HL
->qq' (except AF)
(n=0,1,2)
n]j
Cl]
r=r+1
[HL]=[HL]+1
Xx=xxX+1
[xx+d]=[xx+d]+1
ss=ss+1
[HL]=[C], HL=HL-1,
IND 'til B=0
[HL]=[C], HL=HL+1,
INI 'til B=0
PC=[HL]
PC=[xx]
PC=nn
If cc JP

BC=BC-1
or BC=0
BC=BC-1
or BC=0

B=B-1

B=B-1

JRe @ —-—-———-
JR cc,e —-—————-
LD dst,src -—-——-————--
LD A,I **0*0-
LDD --0*0-
LDDR --000-
LDI --0*0-
LDIR --000-
NEG AV
NOP ===
OR s ***P00
OTDR 21?721~
OTIR 21?721~
ouT (C),r ———-——-
ouT (n),A —-————-
OUTD ?2F221-
OUTI ?2x2?1-
POP xx —-————-
POP gqg -—-————-
PUSH xx —-——-————-
PUSH gq@ --——-———-
RES b,m ------
RET —————-—
RET cc @ —-—————-
RETI = —————-—
RETN —————-—
RL m **QPO*
RLA --0-0*
RLC m **QP0O*
RLCA --0-0*
RLD **0P0-
RR m **QPO*
RRA --0-0*
RRC m **QP0-
RRCA --0-0*
RRD **0P0-
RSTp —-————-—
SBC A,s ***V1*
SBC HL, ss R AVA
SCF --0-01
SET b,m ------
SLA m **QPO*
SRA m **QPO*
SRL m **QPO*
SUB s *ERKY] X

Unconditional Jump
Conditional Jump

Load
Load A=1
Load and Decrement
Load, Dec., Repeat
Load and Increment
Load, Inc., Repeat
Negate A=-

No Operation
Logical Inclusive OR

Output, Dec., Repeat
Output, Inc., Repeat
Output
Output

Output and Decrement
Output and Increment

Pop XX=
Pop qqa=
Push -[S
Push -[S
Reset bit

Return PC=
Conditional Return
Return from Interrupt
Return from NMI
Rotate Left

Rotate Left Acc.
Rotate Left Circular
Rotate Left Circular
Rotate Left 4 bits
Rotate Right

Rotate Right Acc.
Rotate Right Circular

Rotate Right Circular
Rotate Right 4 bits
Restart (p=
Subtract with Carry
Subtract with Carr
Set Carry Flag
Set bit
Shift Left Arithmetic
Shift Right Arithmeti
Shift Right Logical
Subtract

m=->{0,m,CY}

A=A-s

PC=PC+e
If cc JR (cc=C,NC,NZ, Z)
dst=src
(i:I/R)
[DE]=[HL], HL=HL-1, B=B-1
LDD 'til BC=0
[DE]=[HL], HL=HL+1l, B=B-1
LDI 'til B=0
A
A=A OR S
OUTD 'til B=0
OUTI 'til B=0
[Cl=r
[n]=A
[C]=[HL], HL=HL-1, B=B-1
[C1=[HL], HL=HL+1, B=B-1
[SP]+
[SP]+
Pl=xx
P]=qq
m=m&{-2"b}
[SP]+
If cc RET
PC=[SP]+
PC=[SP]+
m={CY, m}<-
A={CY,m}<-
m=m<-—
A=A<-
{A, [HL] }={A, [HL] }<-
m=->{CY, m}
A=->{CY,m}
m=->m
A=->A
{A, [HL] }=->{A, [HL]}
Oh,8h,10h, ..., 38h)
A=A-s-CY
y HL=HL-ss-CY
Ccy=1
m=m or {2"b}
m=m* 2
c m=m/2

Page 49

- TeddyWareZ -

XOR s ***P00 Logical Exclusive OR A=A xXOr s ADD 1IY,IY 15 2 FD 29
ADD IY,SP 15 2 FD 39
AND (HL) 7 1 A6
AND (IX+N) 19 3 DD A6 XX
AND (IY+N) 19 3 FD A6 XX
AND r 4 1 AQ+rb
AND N 7 2 E6 XX
Mnemonic Clock Siz OP-Code
BIT b, (HL) 12 2 CB 46+8*b
BIT b, (IX+N) 20 4 DD CB XX 46+8*Db
BIT b, (IY+N) 20 4 FD CB XX 46+8%*Db
BIT b, r 8 2 CB 40+8*b+rb
CALL C,NN 17/1 3 DC XX XX
CALL M, NN 17/1 3 FC XX XX
. . . CALL NC,NN 17/1 3 D4 XX XX
5.2. Instructlon tlmlngs CALL NC, NN 17/1 3 D4 XX XX
CALL NN 17 3 CD XX XX
)) CALL NZ,NN 17/1 3 C4 XX XX
Mnemonic Clock Siz OP-Code CALL P, NN 17/1 3 F4 XX XX
ADC A, (HL) 7 1 8E CALL PE,NN 17/1 3 EC XX XX
ADC &, (IX+N) 19 3 DD 8E XX CALL PO, NN 17/1 3 E4 XX XX
ADC A, (IY+N) 19 3 FD 8E XX CALL %, NN 1771 3 cC %X XX
ADC A, r 4 1 88+rb
ADC A,N / 2 CE XX Mnemonic Clock Siz OP-Code
ADC HL,BC 15 2 ED 4A cr . T
ADC HL, DE 15 2 ED 5A P (HL) . R
ADC HL, HL 15 2 ED 6A CP (IX+N) 19 3 DD BE XX
ADC HL,SP 15 2 ED A CP (IY+N) 19 3 FD BE XX
ADD A, (HL) 7 186 CP r 4 1 B8+rb
ADD A, (IX+N) 19 3 DD 86 XX op N . > TE xx
ADD A, (IY+N) 19 3 FD 86 XX oPD le > ED a9
ADD A, r 4 1 80+4rb CPDR 21/1 2 ED B9
ADD A, N 7 2 C6 XX oPT le > Ep A1
ADD HL,BC 11 103 CPIR 21/1 2 ED Bl
)) CPL 4 1 2F
Mnemonic Clock Siz OP-Code DAR 4 1 27
ADD HL, DE 11 1 19 DEC (HL) 11 1 35
ADD HL, HL 11 123 DEC (IX+N) 23 3 DD 35 XX
ADD HL,SP 11 139 DEC (IY+N) 23 3 FD 35 XX
ADD IX,BC 15 2 DD 09 I . 1 s
ADD IX,DE 15 2 DD 19
ADD IX,IX 15 2 bD 29 Mnemonic Clock Siz OP-Code
ADD IX,SP 15 2 DD 39 SEe B " T 0o
ADD IY,BC 15 2 FD 09 DEC BC ‘ 1 o
ADD IY,DE 15 2 FD 19

- Chaos Assembler 3 Help File - Page 50

- TeddyWareZ -

DEC C 4 1 0D INC H 4 1 24
DEC D 4 1 15 INC HL 9 1 23
DEC DE 9 1 1B INC IX 10 2 DD 23
DEC E 4 1 1D INC IY 10 2 FD 23
DEC H 4 1 25 INC L 4 1 2C
DEC HL [1 2B INC SP [1 33
DEC IX 10 2 DD 2B IND 16 2 ED AA
DEC IY 10 2 FD 2B
DEC L 4 2 2D Mnemonic Clock Siz OP-Code
DEC SP [1 3B INDR 21/1 2 ED BA
DI 4 1 F3 INI 16 2 ED A2
DINZ $+2 13/8 1 10 INIR 21/1 2 ED B2
ET 4 1 FB JP SNN 10 3 C3 XX XX
EX (SP),HL 19 1 E3 JP (HL) 4 1 E9
EX (SP),IX 23 2 DD E3 JP (IX) 8 2 DD E9
JP (IY) 8 2 FD E9
Mnemonic Clock Siz OP-Code JP C, SNN 10/1 3 DA XX XX
EX (SP),IY 23 2 FD E3 JP M, SNN 10/1 3 FA XX XX
EX AF,AF' 4 1 08 JP NC, SNN 10/1 3 D2 XX XX
EX DE,HL 4 1 EB JP NZ, SNN 10/1 3 C2 XX XX
EXX 4 1 D9 JP P, SNN 10/1 3 F2 XX XX
HALT 4 1 76 JP PE, $NN 10/1 3 EA XX XX
IM 0 8 2 ED 46 JP PO, SNN 10/1 3 E2 XX XX
IM 1 8 2 ED 56 JP 7, $NN 10/1 3 CA XX XX
IM 2 8 2 ED 5E
IN A, (C) 12 2 ED 78 Mnemonic Clock Siz OP-Code
IN A, (N) 11 2 DB XX JR $N+2 12 2 18 XX
IN B, (C) 12 2 ED 40 JR C, $N+2 12/7 2 38 XX
IN C, (C) 12 2 ED 48 JR NC, SN+2 12/7 2 30 XX
IN D, (C) 12 2 ED 50 JR NZ, $N+2 12/7 2 20 XX
IN E, (C) 12 2 ED 58 JR Z,$N+2 12/7 2 28 XX
IN H, (C) 12 2 ED 60 LD (BC),A 7 1 02
IN L, (C) 12 2 ED 68 LD (DE),A 7 1 12
LD (HL),r 7 1 70+rb
Mnemonic Clock Siz OP-Code LD (HL),N 10 2 36 XX
INC (HL) 11 1 34 LD (IX+N),r 19 3 DD 70+4+rb XX
INC (IX+N) 23 3 DD 34 XX LD (IX+N),N 19 4 DD 36 XX XX
INC (IY+N) 23 3 FD 34 XX LD (IY+N),r 19 3 FD 70+rb XX
INC A 4 1 3C LD (IY+N),N 19 4 FD 36 XX XX
INC B 4 1 04 LD (NN),A 13 3 32 XX XX
INC BC [1 03 LD (NN),BC 20 4 ED 43 XX XX
INC C 4 1 ocC
INC D 4 1 14 Mnemonic Clock Siz OP-Code
INC DE 9 1 13 LD (NN),DE 20 4 ED 53 XX XX
INC E 4 1 1C LD (NN),HL 16 3 22 XX XX

- Chaos Assembler 3 Help File - Page 51

- TeddyWareZ -

LD (NN),IX 20 4 DD 22 XX XX LD HL, (NN) 20 3 2A XX XX
LD (NN),IY 20 4 FD 22 XX XX LD HL, NN 10 3 21 XX XX
LD (NN),SP 20 4 ED 73 XX XX
LD A, (BC) 7 1 0A Mnemonic Clock Siz OP-Code
1D A, (DE) 7 1 1A 1D I,A 9 2 ED 47
LD A, (HL) 7 1 TE LD IX, (NN) 20 4 DD 2A XX XX
LD A, (IX+N) 19 3 DD 7E XX LD IX,NN 14 4 DD 21 XX XX
LD A, (IY+N) 19 3 FD 7E XX LD IY, (NN) 20 4 FD 2A XX XX
LD A, (NN) 13 3 3A XX XX LD IY,NN 14 4 FD 21 XX XX
1D A, r 4 1 78+rb LD L, (HL) 7 1 6E
LD A, I 9 2 ED 57 LD L, (IX+N) 19 3 DD 6E XX
LD A,N 7 2 3E XX LD L, (IY+N) 19 3 FD 6E XX
LD B, (HL) 7 1 46 LD L,r 4 1 68+rb
LD L,N 7 2 2E XX
Mnemonic Clock Siz OP-Code LD SP, (NN) 20 4 ED 7B XX XX
LD B, (IX+N) 19 3 DD 46 XX LD SP,HL [1 F9
LD B, (IY+N) 19 3 FD 46 XX LD SP,IX 10 2 DD F9
1D B, r 4 1 40+rb 1D SP,IY 10 2 FD F9
LD B,N 7 2 06 XX LD SP,NN 10 3 31 XX XX
LD BC, (NN) 20 4 ED 4B XX XX
LD BC,NN 10 3 01 XX XX Mnemonic Clock Siz OP-Code
LD C, (HL) 7 1 4E LDD 16 2 ED A8
LD C, (IX+N) 19 3 DD 4E XX LDDR 21/1 2 ED B8
LD C, (IY+N) 19 3 FD 4E XX LDT 16 2 ED AO
LD C,r 4 1 48+rb LDIR 21/1 2 ED BO
LD C,N 7 2 OE XX NEG 8 2 ED 44
LD D, (HL) 7 1 56 NOP 4 1 00
LD D, (IX+N) 19 3 DD 56 XX OR (HL) 7 1 B6
LD D, (IY+N) 19 3 FD 56 XX OR (IX+N) 19 3 DD B6 XX
LD D, r 4 1 50+rb OR (IY+N) 19 3 FD B6 XX
OR r 4 1 BO+rb
Mnemonic Clock Siz OP-Code OR N 7 2 Fo XX
LD D,N 7 2 16 XX OTDR 21/1 2 ED BB
LD DE, (NN) 20 4 ED 5B XX XX OTIR 21/1 2 ED B3
LD DE, NN 10 3 11 XX XX ouT (C),A 12 2 ED 79
LD E, (HL) 7 1 5E ouT (C),B 12 2 ED 41
LD E, (IX+N) 19 3 DD 5E XX ouT (C),C 12 2 ED 49
LD E, (IY+N) 19 3 FD 5E XX
ID E,r 4 1 58+rb Mnemonic Clock Siz OP-Code
LD E,N 7 2 1E XX ouT (C),D 12 2 ED 51
LD H, (HL) 7 1 66 ouT (C),E 12 2 ED 59
LD H, (IX+N) 19 3 DD 66 XX ouT (C),H 12 2 ED 61
LD H, (IY+N) 19 3 FD 66 XX ouT (C),L 12 2 ED 69
1D H,r 4 1 60+rDb ouUT (N),A 11 2 D3 XX
LD H,N 7 2 26 XX OUTD 16 2 ED AB

- Chaos Assembler 3 Help File - Page 52

- TeddyWareZ -

OUTI 16 2 ED A3 RR (IX+N) 23 4 DD CB XX 1E
POP AF 10 1 Fl
POP BC 10 1 Cl Mnemonic Clock Siz OP-Code
POP DE 10 1 D1 RR (IY+N) 23 4 FD CB XX 1E
POP HL 10 1 E1l RRA 4 1 1F
POP IX 14 2 DD E1 RRC (HL) 15 2 CB OE
POP 1IY 14 2 FD E1 RRC (IX+N) 23 4 DD CB XX O0OE
PUSH AF 11 1 F5 RRC (IY+N) 23 4 FD CB XX O0OE
PUSH BC 11 1 C5 RRC r 8 2 CB 08+rb
PUSH DE 11 1 D5 RRCA 4 1 OF
PUSH HL 11 1 E5 RRD 18 2 ED 67

RST O 11 1 c7
Mnemonic Clock Siz OP-Code RST 8H 11 1 CF
PUSH IX 15 2 DD E5 RST 10H 11 1 D7
PUSH IY 15 2 FD E5 RST 18H 11 1 DF
RES b, (HL) 15 2 CB 86+8*b RST 20H 11 1 E7
RES b, (IX+N) 23 4 DD CB XX 86+8*Db RST 28H 11 1 EF
RES b, (IY+N) 23 4 FD CB XX 86+8*Db RST 30H 11 1 F7
RES b, r 8 2 CB 80+8*b+rb RST 38H 11 1 FF
RET 10 1 C9
RET C 11/5 1 D8 Mnemonic Clock Siz OP-Code
RET M 11/5 1 F8 SBC (HL) 7 1 9E
RET NC 11/5 1 DO SBC A, (IX+N) 19 3 DD 9E XX
RET Nz 11/5 1 (6]0] SBC A, (IY+N) 19 3 FD 9E XX
RET P 11/5 1 FO SBC A,N 7 2 DE XX
RET PE 11/5 1 E8 SBC r 4 1 98+rb
RET PO 11/5 1 EO SBC HL, BC 15 2 ED 42
RET 2 11/5 1 C8 SBC HL,DE 15 2 ED 52
RETI 14 2 ED 4D SBC HL, HL 15 2 ED 62

SBC HL, SP 15 2 ED 72
Mnemonic Clock Siz OP-Code SCF 4 1 37
RETN 14 2 ED 45 SET b, (HL) 15 2 CB Co6+8*b
RL (HL) 15 2 CB 16 SET b, (IX+N) 23 4 DD CB XX C6+8*Db
RL r 8 2 CB 10+rb SET b, (IY+N) 23 4 FD CB XX C6+8*Db
RL (IX+N) 23 4 DD CB XX 16 SET b, r 8 2 CB C0+8*b+rb
RL (IY+N) 23 4 FD CB XX 16 SLA (HL) 15 2 CB 26
RLA 4 1 17
RLC (HL) 15 2 CB 06 Mnemonic Clock Siz OP-Code
RLC (IX+N) 23 4 DD CB XX 06 SLA (IX+N) 23 4 DD CB XX 26
RLC (IY+N) 23 4 FD CB XX 06 SLA (IY+N) 23 4 FD CB XX 26
RLC r 8 2 CB 00+rb SLA r 8 2 CB 20+rb
RLCA 4 1 07 SRA (HL) 15 2 CB 2E
RLD 18 2 ED 6F SRA (IX+N) 23 4 DD CB XX 2E
RR (HL) 15 2 CB 1E SRA (IY+N) 23 4 FD CB XX 2E
RR r 8 2 CB 18+rb SRA r 8 2 CB 28+rb

- Chaos Assembler 3 Help File - Page 53

- TeddyWareZ -

SRL (HL) 15 2 CB 3E

SRL (IX+N) 23 4 DD CB XX 3E
SRL (IY+N) 23 4 FD CB XX 3E
SRL r 8 2 CB 38+rb
SUB (HL) 7 1 96

SUB (IX+N) 19 3 DD 96 XX
SUB (IY+N) 19 3 FD 96 XX
Mnemonic Clock Siz OP-Code

SUB r 4 1 90+rb

SUB N 7 2 D6 XX

XOR (HL) 7 1 AE

XOR (IX+N) 19 3 DD AE XX
XOR (IY+N) 19 3 FD AE XX
XOR r 4 1 A8+rb

XOR N 7 2 EE XX

r means reqister (can be A, B, C, D, E, H, L).

Add this to last byte of OP-code:

Req Regbits

rTmoow>»
ORWN-aON

On >LD (IX+N),r< and >LD (IY+N),r< you add it to the byte before the last.
b means bit. Can be 0-7. Increase the last byte of OP-code with 8*b. Used in SET, BIT and RES.
If there is two numbers given at Clock, then the highest is when the jump is taken.

Collected by Oscar Lindberg 960324
(UNREGISTERED DEMO VERSION) from:

Z80 pocketbook
Z80 assembly language programming

- Chaos Assembler 3 Help File -

5.3. Complete opcode list

This should be the complete list of all the opcodes of the Zilog Z80.

If an EDxx instruction is not listed, it should operate as two NOPs. If a DDxx or FDxx instruction is
not listed, it should operate as without the DD or FD prefix, and the DD or FD prefix should
operate as a NOP.

* means unofficial.

LD A,RLC (IX+d) means that the result of RLC (IX+d) is not only stored in (IX+d), but also in A.
Double value for money. :)

SLL x operates the same as SLA x, except that SLL inserts 1 to the left.
OUT (C),0 always outs zero.

IN (C)/IN F,(C) does not store the result from the input. It only affects the flags, as the other IN
r,(C) instructions do. These two notations both refer to the same unofficial instruction.

IM 0/1 sets the Z80 in IM 0 or in IM 1 mode.

RETN/I is either a RETI or a RETN.

OPCODE MNEMONIC

00 NOP

0l nn LD BC,nn
02 LD (BC),A
03 INC BC

04 INC B

05 DEC B

06 n 1D B,n

07 RLCA

08 EX AF,AF-

Page 54

- TeddyWareZ -

09 ADD HL, BC 36 n LD (HL),n
0A LD A, (BC) 37 SCF

0B DEC BC 38 d JR C,PC+d
oC INC C 39 ADD HL,SP
0D DEC C 3A nn LD A, (nn)
OE n LD C,n 3B DEC SP
OF RRCA 3C INC A

10 d DJINZ PC+d 3D DEC A

11 nn LD DE,nn 3E n LD A,n

12 LD (DE),A 3F CCF

13 INC DE 40 LD B,B

14 INC D 41 1D B,C
15 DEC D 42 LD B,D
16 n 1D D,n 43 1D B,E

17 RLA 44 LD B,H
18 d JR PC+d 45 LD B,L
19 ADD HL, DE 46 LD B, (HL)
1A 1D A, (DE) 47 1D B,A
1B DEC DE 48 LD C,B
1C INC E 49 LD C,C
1D DEC E 4A LD C,D
1E n 1D E,n 4B 1D C,E
1F RRA 4C LD C,H
20 d JR NZ, PC+d 4D LD C,L
21 n n LD HL,nn 4E LD C, (HL)
22 n n LD (nn),HL 4F LD C,A
23 INC HL 50 LD D,B
24 INC H 51 1D D,C
25 DEC H 52 LD D,D
26 n 1D H,n 53 1D D,E
27 DAA 54 LD D,H
28 d JR 7,PC+d 55 LD D, L
29 ADD HL, HL 56 LD D, (HL)
2A n n LD HL, (nn) 57 LD D,A
2B DEC HL 58 LD E,B
2C INC L 59 LD E,C
2D DEC L 5A LD E,D
2E n 1D L,n 5B 1D E,E
2F CPL 5C LD E,H
30 d JR NC, PC+d 5D LD E,L
31 nn LD SP,nn 5E LD E, (HL)
32 nn LD (nn),A 5F LD E,A
33 INC SP 60 LD H,B
34 INC (HL) 6l LD H,C
35 DEC (HL) 62 LD H,D

~

- Chaos Assembler 3 Help File - Page 55

- TeddyWareZ -

63 LD H,E 90 SUB B

64 LD H,H 91 SUB C

65 LD H,L 92 SUB D
66 LD H, (HL) 93 SUB E

67 LD H,A 94 SUB H
68 1D L,B 95 SUB L
69 b L,C 96 SUB (HL)
6A LD L,D 97 SUB A
6B 1D L,E 98 SBC A,B
6C 1D L,H 99 SBC A,C
6D 1D L,L 9A SBC A,D
6E LD L, (HL) 9B SBC A,E
6F 1D L,A 9C SBC A,H
70 LD (HL),B 9D SBC A, L
71 LD (HL),C 9E SBC A, (HL)
72 LD (HL),D oF SBC A,A
73 LD (HL),E A0 AND B
74 LD (HL),H Al AND C
75 LD (HL),L A2 AND D
76 HALT A3 AND E
77 LD (HL),A A4 AND H
78 1D A,B A5 AND L
79 1D A,C A6 AND (HL)
A LD A,D A7 AND A
7B LD A,E A8 XOR B
7C LD A,H A9 XOR C
7D 1D A,L AR XOR D
7E LD A, (HL) AB XOR E
7F LD A,A AC XOR H
80 ADD A,B AD XOR L

81 ADD A,C AE XOR (HL)
82 ADD A,D AF XOR A
83 ADD A,E BO OR B

84 ADD A, H B1 OR C

85 ADD A, L B2 OR D

86 ADD A, (HL) B3 OR E

87 ADD A,A B4 OR H

88 ADC A,B B5 OR L

89 ADC A,C B6 OR (HL)
8A ADC A,D B7 OR A

8B ADC A,E B8 CP B

8C ADC A,H B9 CP C

8D ADC A, L BA CP D

8E ADC A, (HL) BB CP E

8F ADC A,A BC CP H

- Chaos Assembler 3 Help File - Page 56

- TeddyWareZ -

BD CP L CB1F RR A

BE CP (HL) CB20 SLA B
BF CP A CB21 SLA C
(6]0] RET Nz CB22 SLA D
Cl POP BC CB23 SLA E
C2 nn JP NZ,nn CB24 SLA H
C3 nn JP nn CB25 SLA L
C4 nn CALL NZ,nn CB26 SLA (HL)
C5 PUSH BC CB27 SLA A
C6 n ADD A,n CB28 SRA B
C7 RST Oh CB29 SRA C
C8 RET 7z CB2A SRA D
C9 RET CB2B SRA E
CA n n JP Z,nn CB2C SRA H
CBOO RLC B CB2D SRA L
CBO1 RLC C CB2E SRA (HL)
CBO2 RLC D CB2F SRA A
CBO3 RLC E CB30 SLL B*
CB0O4 RLC H CB31 SLL C*
CBO5 RLC L CB32 SLL D*
CBO6 RLC (HL) CB33 SLL E*
CBO7 RLC A CB34 SLL H*
CBO8 RRC B CB35 SLL L*
CBO09 RRC C CB36 SLL (HL)*
CBOA RRC D CB37 SLL A%
CBOB RRC E CB38 SRL B
CBOC RRC H CB39 SRL C
CBOD RRC L CB3A SRL D
CBOE RRC (HL) CB3B SRL E
CBOF RRC A CB3C SRL H
CB10 RL B CB3D SRL L
CB11 RL C CB3E SRL (HL)
CB12 RL D CB3F SRL A
CB13 RL E CB40 BIT 0,B
CB14 RL H CBR41 BIT O,C
CB15 RL L CB42 BIT 0,D
CB16 RL (HL) CB43 BIT O,E
CB17 RL A CB44 BIT O,H
CB18 RR B CB45 BIT O,L
CB19 RR C CB46 BIT 0, (HL)
CB1A RR D CB47 BIT 0,A
CB1B RR E CB48 BIT 1,B
CB1C RR H CB49 BIT 1,C
CB1D RR L CB4A BIT 1,D
CB1E RR (HL) CB4B BIT 1,E

~

- Chaos Assembler 3 Help File - Page 57

- TeddyWareZ -

CB4cC BIT 1,H CB79 BIT 7,C
CB4D BIT 1,L CB7A BIT 7,D
CB4E BIT 1, (HL) CB7B BIT 7,E
CB4F BIT 1,A CB7C BIT 7,H
CB50 BIT 2,B CB7D BIT 7,L
CB51 BIT 2,C CB7E BIT 7, (HL)
CB52 BIT 2,D CB7F BIT 7,A
CB53 BIT 2,E CB80 RES 0,B
CB54 BIT 2,H CB81 RES 0,C
CB55 BIT 2,L CB82 RES 0,D
CB56 BIT 2, (HL) CB83 RES O0,E
CB57 BIT 2,A CB84 RES 0,H
CB58 BIT 3,B CB85 RES 0, L
CB59 BIT 3,C CB86 RES 0, (HL)
CB5A BIT 3,D CB87 RES 0,A
CB5B BIT 3,E CB88 RES 1,B
CB5C BIT 3,H CB89 RES 1,C
CB5D BIT 3,L CB8A RES 1,D
CB5E BIT 3, (HL) CB8B RES 1,E
CBSF BIT 3,A CB8C RES 1,H
CB60 BIT 4,B CB8D RES 1,L
CB61 BIT 4,C CB8E RES 1, (HL)
CB62 BIT 4,D CB8F RES 1,A
CB63 BIT 4,E CB90 RES 2,B
CB64 BIT 4,H CBI1 RES 2,C
CB65 BIT 4,L CB92 RES 2,D
CB66 BIT 4, (HL) CB93 RES 2,E
CB67 BIT 4,A CB94 RES 2,H
CB638 BIT 5,B CB95 RES 2,L
CB69 BIT 5,C CB96 RES 2, (HL)
CB6A BIT 5,D CB97 RES 2,A
CB6B BIT 5,E CB98 RES 3,B
CB6C BIT 5,H CB99 RES 3,C
CB6D BIT 5,L CB9A RES 3,D
CB6E BIT 5, (HL) CB9B RES 3,E
CB6F BIT 5,A CBOC RES 3,H
CB70 BIT 6,B CB9D RES 3,L
CB71 BIT 6,C CB9E RES 3, (HL)
CB72 BIT 6,D CB9F RES 3,A
CB73 BIT 6,E CBAO RES 4,B
CB74 BIT 6,H CBAl RES 4,C
CB75 BIT 6,L CBA2 RES 4,D
CB76 BIT 6, (HL) CBA3 RES 4,E
CB77 BIT 6,A CBA4 RES 4,H
CB78 BIT 7,B CBAS RES 4,L

~
~

- Chaos Assembler 3 Help File - Page 58

- TeddyWareZ -

CBAb6 RES 4, (HL) CBD3 SET 2,E
CBA7 RES 4,A CBD4 SET 2,H
CBAS RES 5,B CBD5 SET 2,L
CBA9 RES 5,C CBD6 SET 2, (HL)
CBAA RES 5,D CBD7 SET 2,A
CBAB RES 5,E CBDS8 SET 3,B
CBAC RES 5,H CBD9 SET 3,C
CBAD RES 5, L CBDA SET 3,D
CBAE RES 5, (HL) CBDB SET 3,E
CBAF RES 5,A CBDC SET 3,H
CBBO RES 6,B CBDD SET 3,L
CBB1 RES 6,C CBDE SET 3, (HL)
CBB2 RES 6,D CBDF SET 3,A
CBB3 RES 6,E CBEO SET 4,B
CBB4 RES 6,H CBE1l SET 4,C
CBBS RES 6,L CBE2 SET 4,D
CBB6 RES 6, (HL) CBE3 SET 4,E
CBB7 RES 6,A CBE4 SET 4,H
CBBS8 RES 7,B CBES SET 4,L
CBB9 RES 7,C CBE®6 SET 4, (HL)
CBBA RES 7,D CBE7 SET 4,A
CBBB RES 7,E CBES SET 5,B
CBBC RES 7,H CBE9 SET 5,C
CBBD RES 7,L CBEA SET 5,D
CBBE RES 7, (HL) CBEB SET 5,E
CBBF RES 7,A CBEC SET 5,H
CBCO SET 0,B CBED SET 5,L
CBC1 SET O,C CBEE SET 5, (HL)
CBC2 SET O0,D CBEF SET 5,A
CBC3 SET 0,E CBFO SET 6,B
CBC4 SET 0,H CBF1 SET 6,C
CBC5S SET O,L CBF2 SET 6,D
CBC6 SET 0, (HL) CBF3 SET 6,E
CBC7 SET O0,A CBF4 SET 6,H
CBCS8 SET 1,B CBF5 SET 6,L
CBC9 SET 1,C CBF6 SET 6, (HL)
CBCA SET 1,D CBF7 SET 6,A
CBCB SET 1,E CBF8 SET 7,B
CBCC SET 1,H CBF9 SET 7,C
CBCD SET 1,L CBFA SET 7,D
CBCE SET 1, (HL) CBEB SET 7,E
CBCF SET 1,A CBFC SET 7,H
CBDO SET 2,B CBFD SET 7,L
CBD1 SET 2,C CBFE SET 7, (HL)
CBD2 SET 2,D CBFF SET 7,A

~
~

- Chaos Assembler 3 Help File - Page 59

- TeddyWareZ -

CC nn CALL Z,nn DD5D LD E, IXL*
CD n n CALL nn DD5E d LD E, (IX+d)
CE n ADC A,n DD60 LD IXH,B*
CF RST 8h DD61 LD IXH,C*
DO RET NC DD62 LD IXH,D*
D1 POP DE DD63 LD IXH,E*
D2 n n JP NC, nn DD64 LD IXH, IXH*
D3 n OouT (n),A DD65 LD IXH, IXL*
D4 n n CALL NC,nn DD66 d LD H, (IX+d)
D5 PUSH DE DD67 LD IXH,A*
D6 n SUB n DD68 LD IXL,B*
D7 RST 10h DD69 LD IXL,Cx*
D8 RETC DD6A LD IXL,Dx*
D9 EXX DD6B LD IXL,E*
DA n n JP C,nn DD6C LD IXL,IXH*
DB n IN A, (n) DD6D LD IXL,IXL*
DC n n CALL C,nn DD6E d LD L, (IX+d)
DDO09 ADD IX,BC DD6F LD IXL,A%*
DD19 ADD IX,DE DD70 d LD (IX+d),B
DD21 n n LD IX,nn DD71 d LD (IX+d),C
DD22 n n LD (nn),IX DD72 d LD (IX+d),D
DD23 INC IX DD73 d LD (IX+d),E
DD24 INC IXH* DD74 d LD (IX+d),H
DD25 DEC IXH* DD75 d LD (IX+d),L
DD26 n LD IXH,n* DD77 d LD (IX+d),A
DD29 ADD IX,IX DD7C LD A, IXH*
DD2A n n LD IX, (nn) DD7D LD A, IXL*
DD2B DEC IX DD7E d LD A, (IX+d)
DD2C INC IXL* DD84 ADD A, IXH*
DD2D DEC IXL* DD85 ADD A, IXL*
DD2E n LD IXL,n* DD86 d ADD A, (IX+d)
DD34 d INC (IX+d) DD8C ADC A, IXH*
DD35 d DEC (IX+d) DD8D ADC A, IXL*
DD36 d n LD (IX+d),n DD8E d ADC A, (IX+d)
DD39 ADD IX,SP DD9%4 SUB IXH*
DD44 LD B, IXH* DD95 SUB IXL*
DD45 LD B, IXL* DD96 d SUB (IX+d)
DD46 d LD B, (IX+d) DD9C SBC A, IXH*
DD4C LD C, IXH* DD9D SBC A, IXL*
DD4D LD C, IXL* DDO9E d SBC A, (IX+d)
DD4E d LD C, (IX+d) DDA4 AND IXH*
DD54 LD D, IXH* DDAS AND IXL*
DD55 LD D, IXL* DDAG6 d AND (IX+d)
DD56 d LD D, (IX+d) DDAC XOR IXH*
DD5C LD E, IXH* DDAD XOR IXL*

- Chaos Assembler 3 Help File - Page 60

- TeddyWareZ -

DDAE d XOR (IX+d) DDCB d 26 SLA (IX+d)

DDB4 OR IXH* DDCB d 27 LD A,SLA (IX+d)*
DDB5 OR IXL* DDCB d 28 LD B,SRA (IX+d)*
DDB6 d OR (IX+d) DDCB d 29 LD C,SRA (IX+d)*
DDBC CP IXH* DDCB d 2A LD D,SRA (IX+d)*
DDBD CP IXL* DDCB d 2B LD E,SRA (IX+d)*
DDBE d CP (IX+d) DDCB d 2C LD H,SRA (IX+d)*
DDCB d 00 LD B,RLC (IX+d)™* DDCB d 2D LD L,SRA (IX+d)*
DDCB d 01 LD C,RLC (IX+d)™* DDCB d 2E SRA (IX+d)

DDCB d 02 LD D,RLC (IX+d)* DDCB d 2F LD A,SRA (IX+d)*
DDCB d 03 LD E,RLC (IX+d)* DDCB d 30 LD B,SLL (IX+d)*
DDCB d 04 LD H,RLC (IX+d)™* DDCB d 31 LD C,SLL (IX+d)*
DDCB d 05 LD L,RLC (IX+d)™* DDCB d 32 LD D,SLL (IX+d)¥*
DDCB d 06 RLC (IX+d) DDCB d 33 LD E,SLL (IX+d)*¥*
DDCB d 07 LD A,RLC (IX+d)* DDCB d 34 LD H,SLL (IX+d)~*
DDCB d 08 LD B,RRC (IX+d)* DDCB d 35 LD L,SLL (IX+d)*
DDCB d 09 LD C,RRC (IX+d)™* DDCB d 36 SLL (IX+d)~*

DDCB d 0A LD D,RRC (IX+d)™* DDCB d 37 LD A,SLL (IX+d)™*
DDCB d 0B LD E,RRC (IX+d)™* DDCB d 38 LD B,SRL (IX+d)*
DDCB d 0C LD H,RRC (IX+d)* DDCB d 39 LD C,SRL (IX+d)*
DDCB d 0D LD L,RRC (IX+d)* DDCB d 3A LD D,SRL (IX+d)*
DDCB d 0OE RRC (IX+d) DDCB d 3B LD E,SRL (IX+d)*
DDCB d OF LD A,RRC (IX+d)™* DDCB d 3C LD H,SRL (IX+d)*
DDCB d 10 LD B,RL (IX+d)™* DDCB d 3D LD L,SRL (IX+d)*
DDCB d 11 LD C,RL (IX+d)~* DDCB d 3E SRL (IX+d)

DDCB d 12 LD D,RL (IX+d)~* DDCB d 3F LD A,SRL (IX+d)*
DDCB d 13 LD E,RL (IX+d)™* DDCB d 40 BIT 0, (IX+d)*
DDCB d 14 LD H,RL (IX+d)™* DDCB d 41 BIT 0, (IX+d)*
DDCB d 15 LD L,RL (IX+d)™* DDCB d 42 BIT 0, (IX+d)*
DDCB d 16 RL (IX+d) DDCB d 43 BIT 0, (IX+d)*
DDCB d 17 LD A,RL (IX+d)~* DDCB d 44 BIT 0, (IX+d)*
DDCB d 18 LD B,RR (IX+d)™* DDCB d 45 BIT 0, (IX+d)*
DDCB d 19 LD C,RR (IX+d)™* DDCB d 46 BIT 0, (IX+d)
DDCB d 1A LD D,RR (IX+d)™* DDCB d 47 BIT 0, (IX+d)*
DDCB d 1B LD E,RR (IX+d)™* DDCB d 48 BIT 1, (IX+d)™*
DDCB d 1C LD H,RR (IX+d)~* DDCB d 49 BIT 1, (IX+d)™*
DDCB d 1D LD L,RR (IX+d)™* DDCB d 4A BIT 1, (IX+d)™*
DDCB d 1E RR (IX+d) DDCB d 4B BIT 1, (IX+d)~*
DDCB d 1F LD A,RR (IX+d)™* DDCB d 4cC BIT 1, (IX+d)~*
DDCB d 20 LD B,SLA (IX+d)* DDCB d 4D BIT 1, (IX+d)™*
DDCB d 21 LD C,SLA (IX+d)* DDCB d 4E BIT 1, (IX+d)
DDCB d 22 LD D,SLA (IX+d)™* DDCB d 4F BIT 1, (IX+d)~*
DDCB d 23 LD E,SLA (IX+d)™* DDCB d 50 BIT 2, (IX+d)*
DDCB d 24 LD H,SLA (IX+d)™* DDCB d 51 BIT 2, (IX+d)*
DDCB d 25 LD L,SLA (IX+d)* DDCB d 52 BIT 2, (IX+d)*

- Chaos Assembler 3 Help File - Page 61

- TeddyWareZ -

DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB

- Chaos Assembler 3 Help File -

00 00 000000000000 0000000000000000000000000000A0

53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
TA
7B
7C
7D
TE
TF

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB
DDCB

00 00 000000000000 0000000000000000000000000000A0

80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91
92
93
94
95
96
97
98
99
9A
9B
ol
9D
9E
SF
AQ
Al
A2
A3
Ad
A5
A6
A7
A8
A9

AB
AC

LD
LD
LD
LD
LD
LD

RES 0, (

LD
LD
LD
LD
LD
LD
LD

RES 1, (

LD
LD
LD
LD
LD
LD
LD

RES 2, (

LD
LD
LD
LD
LD
LD
LD

RES 3, (

LD
LD
LD
LD
LD
LD
LD

RES 4, (

LD
LD
LD
LD
LD
LD

B, RES
C,RES
D, RES
E,RES
H,RES
L,RES

A,RES
B, RES
C,RES
D, RES
E,RES
H,RES
L,RES

A,RES
B, RES
C,RES
D, RES
E,RES
H,RES
L,RES

A,RES
B, RES
C,RES
D, RES
E,RES
H,RES
L,RES

A,RES
B, RES
C,RES
D, RES
E,RES
H,RES
L,RES

A,RES
B, RES
C,RES
D,RES
E,RES
H,RES

Page 62

- TeddyWareZ -

DDCB d AD LD L,RES 5, (IX+d)* DDCB d DA LD D,SET 3, (IX+d)*
DDCB d AE RES 5, (IX+d) DDCB d DB LD E,SET 3, (IX+d)*
DDCB d AF LD A,RES 5, (IX+d)* DDCB d DC LD H,SET 3, (IX+d)*
DDCB d BO LD B,RES 6, (IX+d)* DDCB d DD LD L,SET 3, (IX+d)*
DDCB d Bl LD C,RES 6, (IX+d)* DDCB d DE SET 3, (IX+d)

DDCB d B2 LD D,RES 6, (IX+d)* DDCB d DF LD A,SET 3, (IX+d)*
DDCB d B3 LD E,RES 6, (IX+d)* DDCB d E0 LD B,SET 4, (IX+d)*
DDCB d B4 LD H,RES 6, (IX+d)* DDCB d E1 LD C,SET 4, (IX+d)*
DDCB d B5 LD L,RES 6, (IX+d)* DDCB d E2 LD D,SET 4, (IX+d)*
DDCB d B6 RES 6, (IX+d) DDCB d E3 LD E,SET 4, (IX+d)*
DDCB d B7 LD A,RES 6, (IX+d)* DDCB d E4 LD H,SET 4, (IX+d)*
DDCB d B8 LD B,RES 7, (IX+d)* DDCB d E5 LD L,SET 4, (IX+d)*
DDCB d B9 LD C,RES 7, (IX+d)* DDCB d E6 SET 4, (IX+d)

DDCB d BA LD D,RES 7, (IX+d)* DDCB d E7 LD A,SET 4, (IX+d)*
DDCB d BB LD E,RES 7, (IX+d)* DDCB d E8 LD B,SET 5, (IX+d)*
DDCB d BC LD H,RES 7, (IX+d)* DDCB d E9 LD C,SET 5, (IX+d)*
DDCB d BD LD L,RES 7, (IX+d)* DDCB d EA LD D,SET 5, (IX+d)*
DDCB d BE RES 7, (IX+d) DDCB d EB LD E,SET 5, (IX+d)*
DDCB d BF LD A,RES 7, (IX+d)* DDCB d EC LD H,SET 5, (IX+d)*
DDCB d CO LD B,SET 0, (IX+d)* DDCB d ED LD L,SET 5, (IX+d)*
DDCB d C1 LD C,SET 0, (IX+d)* DDCB d EE SET 5, (IX+d)

DDCB d C2 LD D,SET 0, (IX+d)* DDCB d EF LD A,SET 5, (IX+d)*
DDCB d C3 LD E,SET 0, (IX+d)* DDCB d FO LD B,SET 6, (IX+d)*
DDCB d C4 LD H,SET 0, (IX+d)* DDCB d F1 LD C,SET 6, (IX+d)*
DDCB d C5 LD L,SET 0, (IX+d)* DDCB d F2 LD D,SET 6, (IX+d)*
DDCB d C6 SET 0, (IX+d) DDCB d F3 LD E,SET 6, (IX+d)*
DDCB d C7 LD A,SET 0, (IX+d)* DDCB d F4 LD H,SET 6, (IX+d)*
DDCB d C8 LD B,SET 1, (IX+d)* DDCB d F5 LD L,SET 6, (IX+d)*
DDCB d C9 LD C,SET 1, (IX+d)* DDCB d F6 SET 6, (IX+d)

DDCB d CA LD D,SET 1, (IX+d)* DDCB d F7 LD A,SET 6, (IX+d)*
DDCB d CB LD E,SET 1, (IX+d)* DDCB d F8 LD B,SET 7, (IX+d)*
DDCB d CC LD H,SET 1, (IX+d)* DDCB d F9 LD C,SET 7, (IX+d)*
DDCB d CD LD L,SET 1, (IX+d)* DDCB d FA LD D,SET 7, (IX+d)*
DDCB d CE SET 1, (IX+d) DDCB d FB LD E,SET 7, (IX+d)*
DDCB d CF LD A,SET 1, (IX+d)* DDCB d FC LD H,SET 7, (IX+d)*
DDCB d DO LD B,SET 2, (IX+d)* DDCB d FD LD L,SET 7, (IX+d)*
DDCB d D1 LD C,SET 2, (IX+d)* DDCB d FE SET 7, (IX+d)

DDCB d D2 LD D,SET 2, (IX+d)* DDCB d FF LD A,SET 7, (IX+d)*
DDCB d D3 LD E,SET 2, (IX+d)* DDE1 POP IX

DDCB d D4 LD H,SET 2, (IX+d)* DDE3 EX (SP),IX

DDCB d D5 LD L,SET 2, (IX+d)* DDE5 PUSH IX

DDCB d D6 SET 2, (IX+d) DDE9 JP IX

DDCB d D7 LD A,SET 2, (IX+d)* DDF9 1D SP,IX

DDCB d D8 LD B,SET 3, (IX+d)* DE n SBC A,n

DDCB d D9 LD C,SET 3, (IX+d)* DF RST 18h

- Chaos Assembler 3 Help File -

Page 63

- TeddyWareZ -

EO RET PO

El POP HL

E2 nn JP PO, nn
E3 EX (SP),HL
E4 n n CALL PO, nn
ES PUSH HL

E6 n AND n

E7 RST 20h

E8 RET PE

E9 JP HL

EA n n JP PE,nn
EB EX DE, HL
EC n n CALL PE,nn
ED40 IN B, (C)
ED41 ouT (C),B
ED42 SBC HL, BC
ED43 n n LD (nn),BC
ED44 NEG

ED45 RETN

ED46 IM 0

ED47 1D I,A
ED48 IN C, (C)
ED49 ouT (C),C
ED4A ADC HL,BC
ED4B n n LD BC, (nn)
EDA4C NEG*

ED4D RETI

ED4E IM 0/1%*
ED4F LD R,A
ED50 IN D, (C)
ED51 ouT (C),D
ED52 SBC HL,DE
ED53 n n LD (nn),DE
ED54 NEG¥*

ED55 RETI/N*
ED56 IM 1

ED57 LD A, I
ED58 IN E, (C)
ED59 ouT (C),E
EDSA ADC HL, DE
ED5B n n LD DE, (nn)
EDSC NEG¥*

ED5D RETI/N*
EDSE IM 2

EDSF LD A,R

- Chaos Assembler 3 Help File -

ED60
ED61
ED62
ED63
ED64
ED65
ED66
ED67
ED68
ED69
ED6A
ED6B
ED6C
ED6D
ED6E
ED6F
ED70
ED71
ED72
ED73
ED74
ED75
ED76
ED78
ED79
ED7A
ED7B
ED7C
ED7D
ED7E
EDAO
EDAl
EDA2
EDA3
EDAS
EDAY
EDAA
EDAB
EDBO
EDB1
EDB2
EDB3
EDBS
EDB9
EDBA

IN H, (C)
OUT (C),H
SBC HL, HL

LD (nn),HL
NEG*
RETI/N*
IM 0*

RRD

IN L, (C)
ouT (C),L
ADC HL, HL
LD HL, (nn)
NEG*
RETI/N*
IM 0/1%*
RLD

IN (C)* / IN F, (C)*

ouT (C),0%*
SBC HL,SP
LD (nn),SP
NEG*
RETI/N*
IM 1%

IN A, (C)
OUT (C),A
ADC HL,SP
LD SP, (nn)
NEG*
RETI/N*
IM 2%

LDI

CPI

INI

OUTI

LDD

CPD

IND

OUTD

LDIR

CPIR

INIR

OTIR

LDDR

CPDR

INDR

Page 64

- TeddyWareZ -

EDBB OTDR

EE n XOR n

EF RST 28h

FO RET P

Fl POP AF

F2 nn JP P,nn

F3 DI

F4d n n CALL P,nn
F5 PUSH AF

F6 n OR n

7 RST 30h

F8 RET M

F9 LD SP,HL
FA n n JP M, nn

FB EI

FC n n CALL M, nn
FDO9 ADD 1IY,BC
FD19 ADD IY,DE
FD21 n n LD IY,nn
FD22 n n LD (nn),IY
FD23 INC IY
FD24 INC IYH*
FD25 DEC IYH*
FD26 n LD IYH,n¥*
FD29 ADD IY,IY
FD2A n n LD IY, (nn)
FD2B DEC IY
FD2C INC IYL*
FD2D DEC IYL*
FD2E n LD IYL,n*
FD34 d INC (IY+d)
FD35 d DEC (IY+d)
FD36 d n LD (IY+d),n
FD39 ADD 1Y,SP
FD44 LD B,IYH*
FD45 LD B,IYL*
FD46 d LD B, (IY+d)
FD4C LD C,IYH*
FD4D LD C,IYL*
FD4E d LD C, (IY+d)
FD54 LD D,IYH*
FD55 LD D,IYL*
FD56 d LD D, (IY+d)
FD5C LD E,IYH*
FD5D LD E,IYL*

- Chaos Assembler 3 Help File -

FD5E
FD60
FD61l
FD62
FD63
FD64
FD65
FD66
FD67
FD68
FD69
FD6A
FD6B
FD6C
FD6D
FD6E
FD6F
FD70
FD71
FD72
FD73
FD74
FD75
ED77
FD7C
FD7D
FD7E
FD84
FD85
FD86
FD8C
FD8D
FDSE
FD9%4
FD95
FD96
FDOC
FD9D
FDIOE
FDA4
FDAS
FDAG6
FDAC
FDAD
FDAE

Q.

Q.0 0 0 0 0 Q

LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
ADD
ADD
ADD
ADC
ADC
ADC
SUB
SUB
SUB
SBC
SBC
SBC
AND
AND
AND
XOR
XOR
XOR

E, (IY+d)
IYH, B*
IYH, C*
IYH, D*
IYH,E*
IYH, IYH*
IYH, IYL*
H, (IY+d)
IYH, A*
IYL,B*
IYL,C*
IYL, D*
IYL,E*
IYL, IYH*
IYL, IYL*
L, (IY+d)

A, (IY+d)
A, IYH*
A, IYL*
A, (IY+d)
A, IYH*
A, IYL*
A, (IY+d)
IYH*
IYL*
(IY+d)
A, IYH*
A, IYL*
A, (IY+d)
IYH*
IYL*
(IY+d)
IYH*
IYL*
(IY+d)

- TeddyWareZ -

FDB4 OR IYH* FDCB d 27 LD A,SLA (IY+d)*
FDB5 OR IYL* FDCB d 28 LD B,SRA (IY+d)*
FDB6 OR (IY+d) FDCB d 29 LD C,SRA (IY+d)*
FDBC CP IYH* FDCB d 2A LD D,SRA (IY+d)*
FDBD Cp IYL* FDCB d 2B LD E,SRA (IY+d)*
FDBE d CP (IY+d) FDCB d 2C LD H,SRA (IY+d)*
FDCB d 00 LD B,RLC () FDCB d 2D LD L,SRA (IY+d)*
FDCB d 01 LD C,RLC () FDCB d 2E SRA (IY+d)

FDCB d 02 LD D,RLC (IY+d) FDCB d 2F LD A,SRA (IY+d)*
FDCB d 03 LD E,RLC (IY+d)~* FDCB d 30 LD B,SLL (IY+d)~*
FDCB d 04 LD H,RLC (IY+d)* FDCB d 31 LD C,SLL (IY+d)~*
FDCB d 05 LD L,RLC (IY+d)™* FDCB d 32 LD D,SLL (IY+d)*
FDCB d 06 RLC (IY+d) FDCB d 33 LD E,SLL (IY+d)*
FDCB d 07 LD A,RLC (IY+d)™* FDCB d 34 LD H,SLL (IY+d)*¥*
FDCB d 08 LD B,RRC (IY+d)* FDCB d 35 LD L,SLL (IY+d)~*
FDCB d 09 LD C,RRC (IY+d)* FDCB d 36 SLL (IY+d)~*

FDCB d 0A LD D,RRC (IY+d)™* FDCB d 37 LD A,SLL (IY+d)™*
FDCB d 0B LD E,RRC (IY+d)™* FDCB d 38 LD B,SRL (IY+d)*
FDCB d 0C LD H,RRC (IY+d)™* FDCB d 39 LD C,SRL (IY+d)*
FDCB d 0D LD L,RRC (IY+d)* FDCB d 3A LD D,SRL (IY+d)*
FDCB d OE RRC (IY+d) FDCB d 3B LD E,SRL (IY+d)*
FDCB d OF LD A,RRC (IY+d)™* FDCB d 3C LD H,SRL (IY+d)*
FDCB d 10 LD B,RL (FDCB d 3D LD L,SRL (IY+d)*
FDCB d 11 LD C,RL (FDCB d 3E SRL (IY+d)

FDCB d 12 LD D,RL (FDCB d 3F LD A,SRL (IY+d)*
FDCB d 13 LD E,RL (FDCB d 40 BIT 0, (IY+d)*
FDCB d 14 LD H,RL (FDCB d 41 BIT 0, (IY+d)*
FDCB d 15 LD L,RL (FDCB d 42 BIT 0, (IY+d)*
FDCB d 16 RL (IY+d) FDCB d 43 BIT 0, (IY+d)*
FDCB d 17 LD A,RL (FDCB d 44 BIT 0, (IY+d)*
FDCB d 18 LD B,RR (FDCB d 45 BIT 0, (IY+d)*
FDCB d 19 LD C,RR (FDCB d 46 BIT 0, (IY+d)
FDCB d 1A LD D,RR (FDCB d 47 BIT 0, (IY+d)*
FDCB d 1B LD E,RR (FDCB d 48 BIT 1, (IY+d)™*
FDCB d 1C LD H,RR (FDCB d 49 BIT 1, (IY+d)™*
FDCB d 1D LD L,RR (FDCB d 4A BIT 1, (IY+d)™*
FDCB d 1E RR (IY+d) FDCB d 4B BIT 1, (IY+d)~*
FDCB d 1F LD A,RR (IY+d)™* FDCB d 4C BIT 1, (IY+d)™*
FDCB d 20 LD B,SLA (IY+d)™* FDCB d 4D BIT 1, (IY+d)™*
FDCB d 21 LD C,SLA (IY+d)* FDCB d 4E BIT 1, (IY+d)
FDCB d 22 LD D,SLA (IY+d)* FDCB d 4F BIT 1, (IY+d)™*
FDCB d 23 LD E,SLA (IY+d)™* FDCB d 50 BIT 2, (IY+d)*
FDCB d 24 LD H,SLA (IY+d)™* FDCB d 51 BIT 2, (IY+d)*
FDCB d 25 LD L,SLA (IY+d)™* FDCB d 52 BIT 2, (IY+d)*
FDCB d 26 SLA (IY+d) FDCB d 53 BIT 2, (IY+d)*

- Chaos Assembler 3 Help File - Page 66

- TeddyWareZ -

FDCB d 54 BIT 2, (IY+d)* FDCB d 81 LD C,RES 0, (IY+d)*
FDCB d 55 BIT 2, (IY+d)* FDCB d 82 LD D,RES 0, (IY+d)*
FDCB d 56 BIT 2, (IY+d) FDCB d 83 LD E,RES 0, (IY+d)*
FDCB d 57 BIT 2, (IY+d)* FDCB d 84 LD H,RES 0, (IY+d)*
FDCB d 58 BIT 3, (IY+d)* FDCB d 85 LD L,RES 0, (IY+d)*
FDCB d 59 BIT 3, (IY+d)* FDCB d 86 RES 0, (IY+d)

FDCB d 5A BIT 3, (IY+d)* FDCB d 87 LD A,RES 0, (IY+d)*
FDCB d 5B BIT 3, (IY+d)* FDCB d 88 LD B,RES 1, (IY+d)*
FDCB d 5C BIT 3, (IY+d)* FDCB d 89 LD C,RES 1, (IY+d)*
FDCB d 5D BIT 3, (IY+d)* FDCB d 8A LD D,RES 1, (IY+d)*
FDCB d 5E BIT 3, (IY+d) FDCB d 8B LD E,RES 1, (IY+d)*
FDCB d 5F BIT 3, (IY+d)* FDCB d 8C LD H,RES 1, (IY+d)*
FDCB d 60 BIT 4, (IY+d)* FDCB d 8D LD L,RES 1, (IY+d)*
FDCB d 61 BIT 4, (IY+d)* FDCB d 8E RES 1, (IY+d)

FDCB d 62 BIT 4, (IY+d)* FDCB d 8F LD A,RES 1, (IY+d)*
FDCB d 63 BIT 4, (IY+d)* FDCB d 90 LD B,RES 2, (IY+d)*
FDCB d 64 BIT 4, (IY+d)* FDCB d 91 LD C,RES 2, (IY+d)*
FDCB d 65 BIT 4, (IY+d)* FDCB d 92 LD D,RES 2, (IY+d)*
FDCB d 66 BIT 4, (IY+d) FDCB d 93 LD E,RES 2, (IY+d)*
FDCB d 67 BIT 4, (IY+d)* FDCB d 94 LD H,RES 2, (IY+d)*
FDCB d 68 BIT 5, (IY+d)* FDCB d 95 LD L,RES 2, (IY+d)*
FDCB d 69 BIT 5, (IY+d)* FDCB d 96 RES 2, (IY+d)

FDCB d 6A BIT 5, (IY+d)* FDCB d 97 LD A,RES 2, (IY+d)*
FDCB d 6B BIT 5, (IY+d)* FDCB d 98 LD B,RES 3, (IY+d)*
FDCB d 6C BIT 5, (IY+d)* FDCB d 99 LD C,RES 3, (IY+d)*
FDCB d 6D BIT 5, (IY+d)* FDCB d 94 LD D,RES 3, (IY+d)*
FDCB d 6E BIT 5, (IY+d) FDCB d 9B LD E,RES 3, (IY+d)*
FDCB d 6F BIT 5, (IY+d)* FDCB d 9C LD H,RES 3, (IY+d)*
FDCB d 70 BIT 6, (IY+d)* FDCB d 9D LD L,RES 3, (IY+d)*
FDCB d 71 BIT 6, (IY+d)* FDCB d 9E RES 3, (IY+d)

FDCB d 72 BIT 6, (IY+d)* FDCB d 9F LD A,RES 3, (IY+d)*
FDCB d 73 BIT 6, (IY+d)* FDCB d A0 LD B,RES 4, (IY+d)*
FDCB d 74 BIT 6, (IY+d)* FDCB d A1 1D C,RES 4, (IY+d)*
FDCB d 75 BIT 6, (IY+d)* FDCB d A2 LD D,RES 4, (IY+d)*
FDCB d 76 BIT 6, (IY+d) FDCB d A3 LD E,RES 4, (IY+d)*
FDCB d 77 BIT 6, (IY+d)* FDCB d A4 LD H,RES 4, (IY+d)*
FDCB d 78 BIT 7, (IY+d)* FDCB d A5 LD L,RES 4, (IY+d)*
FDCB d 79 BIT 7, (IY+d)* FDCB d A6 RES 4, (IY+d)

FDCB d 7A BIT 7, (IY+d)* FDCB d A7 LD A,RES 4, (IY+d)*
FDCB d 7B BIT 7, (IY+d)* FDCB d A8 LD B,RES 5, (IY+d)*
FDCB d 7C BIT 7, (IY+d)* FDCB d A9 LD C,RES 5, (IY+d)*
FDCB d 7D BIT 7, (IY+d)* FDCB d AA 1D D,RES 5, (IY+d)*
FDCB d 7E BIT 7, (IY+d) FDCB d AB LD E,RES 5, (IY+d)*
FDCB d 7F BIT 7, (IY+d)* FDCB d AC LD H,RES 5, (IY+d)*
FDCB d 80 LD B,RES 0, (IY+d)* FDCB d AD LD L,RES 5, (IY+d)*

- Chaos Assembler 3 Help File - Page 67

- TeddyWareZ -

FDCB d AE RES 5, (IY+d) FDCB d DB LD E,SET 3, (IY+d)*
FDCB d AF LD A,RES 5, (IY+d)* FDCB d DC LD H,SET 3, (IY+d)*
FDCB d BO LD B,RES 6, (IY+d)* FDCB d DD LD L,SET 3, (IY+d)*
FDCB d Bl LD C,RES 6, (IY+d)* FDCB d DE SET 3, (IY+d)

FDCB d B2 LD D,RES 6, (IY+d)* FDCB d DF LD A,SET 3, (IY+d)*
FDCB d B3 LD E,RES 6, (IY+d)* FDCB d EO LD B,SET 4, (IY+d)*
FDCB d B4 LD H,RES 6, (IY+d)* FDCB d E1 LD C,SET 4, (IY+d)*
FDCB d B5 LD L,RES 6, (IY+d)* FDCB d E2 LD D,SET 4, (IY+d)*
FDCB d B6 RES 6, (IY+d) FDCB d E3 LD E,SET 4, (IY+d)*
FDCB d B7 LD A,RES 6, (IY+d)* FDCB d E4 LD H,SET 4, (IY+d)*
FDCB d B8 LD B,RES 7, (IY+d)* FDCB d E5 LD L,SET 4, (IY+d)*
FDCB d B9 LD C,RES 7, (IY+d)* FDCB d E6 SET 4, (IY+d)

FDCB d BA LD D,RES 7, (IY+d)* FDCB d E7 LD A,SET 4, (IY+d)*
FDCB d BB LD E,RES 7, (IY+d)* FDCB d E8 LD B,SET 5, (IY+d)*
FDCB d BC LD H,RES 7, (IY+d)* FDCB d E9 LD C,SET 5, (IY+d)*
FDCB d BD LD L,RES 7, (IY+d)* FDCB d EA LD D,SET 5, (IY+d)*
FDCB d BE RES 7, (IY+d) FDCB d EB LD E,SET 5, (IY+d)*
FDCB d BF LD A,RES 7, (IY+d)* FDCB d EC LD H,SET 5, (IY+d)*
FDCB d CO LD B,SET 0, (IY+d)* FDCB d ED LD L,SET 5, (IY+d)*
FDCB d C1 LD C,SET 0, (IY+d)* FDCB d EE SET 5, (IY+d)

FDCB d C2 LD D,SET 0, (IY+d)* FDCB d EF LD A,SET 5, (IY+d)*
FDCB d C3 LD E,SET 0, (IY+d)* FDCB d FO LD B,SET 6, (IY+d)*
FDCB d C4 LD H,SET 0, (IY+d)* FDCB d F1 LD C,SET 6, (IY+d)*
FDCB d C5 LD L,SET 0, (IY+d)* FDCB d F2 LD D,SET 6, (IY+d)*
FDCB d C6 SET 0, (IY+d) FDCB d F3 LD E,SET 6, (IY+d)*
FDCB d C7 LD A,SET 0, (IY+d)* FDCB d F4 LD H,SET 6, (IY+d)*
FDCB d C8 LD B,SET 1, (IY+d)* FDCB d F5 LD L,SET 6, (IY+d)*
FDCB d C9 LD C,SET 1, (IY+d)* FDCB d F6 SET 6, (IY+d)

FDCB d CA LD D,SET 1, (IY+d)* FDCB d F7 LD A,SET 6, (IY+d)*
FDCB d CB LD E,SET 1, (IY+d)* FDCB d F8 LD B,SET 7, (IY+d)*
FDCB d CC LD H,SET 1, (IY+d)* FDCB d F9 LD C,SET 7, (IY+d)*
FDCB d CD LD L,SET 1, (IY+d)* FDCB d FA LD D,SET 7, (IY+d)*
FDCB d CE SET 1, (IY+d) FDCB d FB LD E,SET 7, (IY+d)*
FDCB d CF LD A,SET 1, (IY+d)* FDCB d FC LD H,SET 7, (IY+d)*
FDCB d DO LD B,SET 2, (IY+d)* FDCB d FD LD L,SET 7, (IY+d)*
FDCB d DI LD C,SET 2, (IY+d)* FDCB d FE SET 7, (IY+d)

FDCB d D2 LD D,SET 2, (IY+d)* FDCB d FF LD A,SET 7, (IY+d)*
FDCB d D3 LD E,SET 2, (IY+d)* FDE1 POP IY

FDCB d D4 LD H,SET 2, (IY+d)* FDE3 EX (SP),IY

FDCB d D5 LD L,SET 2, (IY+d)* FDE5 PUSH IY

FDCB d D6 SET 2, (IY+d) FDEO JP IY

FDCB d D7 LD A,SET 2, (IY+d)* FDF9 1D SP,IY

FDCB d D8 LD B,SET 3, (IY+d)* FE n CP n

FDCB d D9 LD C,SET 3, (IY+d)* FF RST 38h

FDCB d DA LD D,SET 3, (IY+d)*

- Chaos Assembler 3 Help File - Page 68

- TeddyWareZ -

- Chaos Assembler 3 Help File - Page 69

- TeddyWareZ -

6. TASM Documentation

6.1. About TASM

The Telemark Assembler (TASM) User's Manual

Version 3.1
February, 1998

Thomas N. Anderson
Squak Valley Software
837 Front Street South,
Issaquah, WA 98027
Compuserve: 73770,3612

http://www.halcyon.com/squakvly/

Copyright (C) 1998 by Squak Valley Software.

All rights reserved.

6.2. Table of contents

INTRODUCTION

SHAREWARE

UNREGISTERED DEMO VERSION
ENVIRONMENT VARIABLES

EXIT CODES

SOURCE FILE FORMAT
UNREGISTERED DEMO VERSION

- Chaos Assembler 3 Help File -

NoopwN

8. ASSEMBLER DIRECTIVES

9. OBJECT FILE FORMATS

10. LISTING FILE FORMAT

11. UNREGISTERED DEMO VERSION
12. ERROR MESSAGES

13. LIMITATIONS

TASM. Copyright (C) 1998 by Squak Valley Software.
All rights reserved.

6.3. Introduction

The Telemark Assembler (TASM) is a table driven cross assembler for the MS-DOS and LINUX
environments. Assembly source code, written in the appropriate dialect (generally very close to

the manufacturers assembly language), can be assembled with TASM, and the resulting object

code transferred to the target microprocessor system via PROM or other mechanisms.

The microprocessor families supported by TASM are:

6502

6800/6801/68HC11

6805

8048

8051

8080/8085, Z80

TMS32010, TMS320C25

TMS7000

8096/80196

The user so inclined may build tables for other microprocessors. The descriptions of the various
existing tables and instructions on building new tables are not in this document but can be found
in the TASMTABS.HTM file on the TASM distribution disk.

TASM characteristics include:

1. Powerful expression parsing (17 operators).
2. Supports a subset of the 'C' preprocessor commands.
3. Macro capability (through use of DEFINE directive).

Page 70

- TeddyWareZ -

Multiple statements per line.

Four object file formats: Intel hex, MOS Technology hex, Motorola hex, binary.
Absolute code generation only.

Source code available (in C).

Uniform syntax across versions for different target machines.

Features in support of PROM programming (preset memory, contiguous block).
10. Supports extended instructions for many of the supported microprocessor families.
11. Tables read at run time - single TASM executable for all table versions.

11. Symbol table export for inclusion in subsequent assemblies.

12. Symbol table export file for import with some simulator products.

©oN oA

TASM. Copyright (C) 1998 by Squak Valley Software.
All rights reserved.

6.4. Shareware

TASM is distributed as shareware. TASM is not in the public domain. The TASM distribution files
may be freely copied (excluding the source code files) and freely used for the purpose of
evaluating the suitability of TASM for a given purpose. Use of TASM beyond a reasonable
evaluation period requires registration. Prolonged use without registration is unethical.

TASM. Copyright (C) 1998 by Squak Valley Software.
All rights reserved.

6.5. Invocation

TASM can be invoked as follows (optional fields shown in brackets, symbolic fields in italics):

- Chaos Assembler 3 Help File -

tasm -pn [-options ...] src file [obj file [lst file [exp file
[sym file]]]]

Where options can be one or more of the following:

-table Specify version (table = table designation)
-ttable Table (alternate form of above)

-aamask Assembly control (optional error checking)
-b Produce object in binary (.COM) format

-C Object file written as a contiguous block
-dmacro Define a macro (or just a macro label)

-e Show source lines after macro expansion

-ffillbyte Fill entire memory space with fillbyte (hex)
-gobjtype Object file (O=Intel Hex, 1=MOS Tech, 2=Motorola, 3=binary,4=Intel Hex (Word))

-h Produce hex table of the assembled code (in list file)
-i Ignore case for labels

-l[al] Produce a label table in the listing

-m Produce object in MOS Technology format

-oobytes Bytes per object record (for hex obj formats)
-p[lines] Page the listing file (lines per page. default=60)

-q Quiet, disable the listing file

-rkb Set read buffer size in Kbytes (default 2 Kbytes)
-s Write a symbol table file

-x[xmask] Enable extended instruction set (if any)

-y Time the assembly

The filename parameters are defined as follows:

src_file Source file name

obj_file Object code file name

Ist_file Listing file name

exp_file Symbol export file (only if the EXPORT directive is used).

sym_file Symbol table file (only if the -s option or the SYM/AVSYM directives are used).

The source file must be specified. If not, some usage information is displayed. Default file names
for all the other files are generated if they are not explicitly provided. The filename is formed by
taking the source filename and changing the extension to one of the following:

Extension _File type

Page 71

- TeddyWareZ -

.OBJ Object file

.LST Listing file

.EXP Symbol export file
.SYM Symbol table file

TASM has no built-in instruction set tables. Instruction set definition files are read at run time.
TASM determines which table to use based on the '-table' field shown above. For example, to
assemble the code in a file called source.asm, one would enter

tasm -48 source.asm foran 8048 assembly

tasm -65 source.asm for a 6502 assembly

tasm -51 source.asm foran 8051 assembly.

tasm -85 source.asm for an 8085 assembly.

tasm -80 source.asm fora Z80 assembly.

tasm -05 source.asm fora 6805 assembly.

tasm -68 source.asm for a 6800/6801/68HC11 assembly.
tasm -70 source.asm fora TMS7000 assembly.

tasm -3210 source.asm fora TMS32010 assembly.
tasm -3225 source.asm fora TMS320C25 assembly.
tasm -96 source.asm fora 8096/80196 assembly

Tables are read from a file named by taking the digits specified after the '-' and appending it to
"TASM' then appending the '.TAB' extension. Thus, the -48 flag would cause the tables to be read
from the file ' TASM48.TAB'.

It is possible to designate tables by non numeric part numbers if the -t flag is used. For example,
if a user built a table called TASMF8.TAB then TASM could be invoked as follows:

tasm -tf8 source.asm

Each option flag must be preceded by a dash. Options need not precede the file names. The
various options are described in the sections that follow.

a - Assembly Control

TASM can provide additional error checking by specifying the -a option at the time of execution. If
the -a is provided without a digit following, then all the available error checking is done. If a digit
follows, then it is used as a mask to determine the error checks to be made. The bits of the mask
are defined as follows:

it Option Default Description

-al OFF Check for apparent illegal use of indirection

-a2 ON Check for unused data in the arguments

-a4 ON Check for duplicate labels

-a8 OFF Check for non-unary operators at start of expression.

- Chaos Assembler 3 Help File -

Q)I\)—\O|w

Combinations of the above bits can also be used. For example, -a5 would enable the checking for
illegal indirection and duplicate labels.

lllegal indirection applies to micros that use parenthesis around an argument to indicate
indirection. Since it is always legal to put an extra pair of parenthesis around any expression (as
far as the expression parser is concerned), the user may think that he/she is indicating indirection
for an instruction that has no indirection and TASM would not complain. Enabling this checking
will result in an error message (warning) whenever an outer pair of parenthesis is used and the
instruction set definition table does not explicitly indicate that to be a valid form of addressing.

Unused data in arguments applies to cases where a single byte of data is needed from an
argument, but the argument contains more than one byte of data. If a full sixteen bit address is
used in a 'Load Immediate' type instruction that needs only a single byte, for example, an error
message would be generated. Here is an example (6502 code):

0001 1234 .org $1234
test.asm line 0002: Unused data in MS byte of argument.
0002 1234 A9 34 start lda #start

To make the above checks occur whenever you do an assembly, add a line like this to your
AUTOEXEC.BAT file:

SET TASMOPTS=-a

b - Binary Object Format

This option causes the object file to be written in binary - one byte for each byte of code/data.
Note that no address information is included in the object file in this format. The contiguous block
(-c) output mode is forced when this option is invoked. This flag is equivalent to -g3.

c - Contiquous Block Output

If this option is specified, then all bytes in the range from the lowest used byte to the highest will
be defined in the object file. Normally, with the default Intel Hex object format enabled, if the
Program Counter (PC) jumps forward because of an .ORG directive, the bytes skipped over will
not have any value assigned them in the object file. With this option enabled, no output to the
object file occurs until the end of the assembly at which time the whole block is written. This is
useful when using TASM to generate code that will be put into a PROM so that all locations will
have a known value. This option is often used in conjunction with the -f option to ensure all
unused bytes will have a known value.

d - Define a Macro

Macros are defined on the command line generally to control the assembly of various IFDEF's
that are in the source file. This is a convenient way to generate various versions of object code
from a single source file.

Page 72

- TeddyWareZ -

e - Expand Source

Normally TASM shows lines in the listing file just as they are in the source file. If macros are in
use (via the DEFINE directive) it is sometimes desirable to see the source lines after expansion.
Use the '-e' flag to accomplish this.

f - Fill Memory
This option causes the memory image that TASM maintains to be initialized to the value specified

by the two hex characters immediately following the 'f'. TASM maintains a memory image that is a
full 64K bytes in size (even if the target processor cannot utilize that memory space). Invocation
of this option introduces a delay at start up of up to 2 seconds (time required to initialize all 64K

bytes).

d - Object File Format
TASM can generate object code in four different formats as indicated below:

Option Description

-g0 Intel hex (default)

-g1 MOS Technology hex (same as -m)
-g2 Motorola hex

-g3 binary (same as -b)

-g4 Intel hex with word addresses

The -m and -b flags may also be used, as indicated above. If both are used the right-most option
on the command line will be obeyed.

See the section on OBJECT FILE FORMATS for descriptions of each of the above.
h - Hex Object Code Table

This option causes a hex table of the produced object code to appear in the listing file. Each line
of the table shows sixteen bytes of code.

i -Ignore Case in Labels
TASM is normally case sensitive when dealing with labels. For those that prefer case insensitivity,
the '-i' command line option can be employed.

| - Label Table
This option causes a label table to appear in the listing file. Each label is shown with its
corresponding value. Macro labels (as established via the DEFINE directives) do not appear.

Two optional suffixes may follow the -I option:
Suffix Description

I Use long form listing
a Show all labels (including local labels)

- Chaos Assembler 3 Help File -

The suffix should immediately follow the '-I'. Here are some examples:

-l to show non-local labels in the short form
-la to show all labels in the short form
-ll to show non-local labels in the long form
-lal to show all labels in the long form

m - MOS Technology Object Format
This option causes the object file to be written in MOS Technology hex format rather than the
default Intel hex format. See section on OBJECT FILE FORMATS for a description of the format.

o - Set Number of Bytes per Object Record

When generating object code in either the MOS Technology format or the Intel hex format, a
default of 24 (decimal) bytes of object are defined on each record. This can be altered by invoking
the '-0' option immediately followed by two hex digits defining the number of bytes per record
desired. For example, if 32 bytes per record are desired, one might invoke TASM as:

tasm -48 -020 source.asm

p - Page Listing File

This option causes the listing file to have top of page headers and form feeds inserted at
appropriate intervals (every sixty lines of output). To override the default of sixty lines per page,
indicate the desired number of lines per page as a decimal number immediately following the '-p'.
Here is an example:

tasm -48 -p56 source.asm

g - Disable Listing File
This option causes all output to the listing file to be suppressed, unless a .LIST directive is
encountered in the source file (see LIST/NOLIST directives).

r - Set Read Buffer Size

This option overrides the default read buffer size of 2 Kbytes. The first hexadecimal digit
immediately after the 'r' is taken as the number of K bytes to allocate for the read buffer (.e.g. -r8
indicates an 8K byte buffer, -rf indicates a 15K byte buffer). Note that that read buffers are taken
from the same memory pool as labels and macro storage, and that additional read buffers are
needed if "includes" are used. Thus, using 8K byte buffers may be suitable for most assembilies,
but programs with large numbers of symbols may not allow such a value. Also, reducing the
buffer size to 1 Kbyte can increase the memory pool available for label storage, if such is needed.

s - Enable Symbol File Generation

If this flag is set, a symbol file is generated at the end of the assembly. The format of the file is
one line per label, each label starts in the first column and is followed by white space and then
four hexadecimal digits representing the value of the label. The following illustrates the format:

Page 73

- TeddyWareZ -

labell FFFE
label?2 FFFF
label3 1000

The symbol file name can be provided as the fifth file name on the command line, or the name
will be generated from the source file name with a '.SYM' extension. The symbol table file can
also be generated by invoking the SYM directive. The AVSYM directive also generates the
symbol file but in a different format (see section on ASSEMBLER DIRECTIVES).

t - Table Name

As an alternative to specifying the instruction set table as two decimal digits, the table indication
may be proceeded by the '-t' option. This is useful if the desired table name starts with a
non-numeric. Thus, a table for an F8 might be selected as:

tasm -tf8 source.asm
TASM would expect to read the instruction set definition tables from a file named TASMF8.TAB.

x - Enable Extended Instruction Set

If a processor family has instructions that are valid for only certain members, this option can be
used to enable those beyond the basic standard instruction set. A hex digit may follow the 'x' to
indicate a mask value used in selecting the appropriate instruction set. Bit O of the mask selects
the basic instruction set, thus a -x1' would have no effect. A '-x3' would enable the basic set plus
whatever instructions have bit 1 set in their class mask. A '-x' without a digit following is
equivalent to a '-xf' which sets all four of the mask bits. The following table indicates the current
extended instruction sets available in the TASM tables:

Base Table Base Family Ext1 (-x3) Ext2 (-x7) Ext3 (-x5) Ext4 (-x9)

48 8048 8041A 8022 8021
65 6502 R65C02 R65C00/21
05 6805 M146805 cmos HC05C4

80 280 HD64180

68 6800 6801/6803 68HC11

51 8051

85 8080

3210 TMS32010

3225 TMS320C25 TMS320C26

70 TMS7000

The above table does not attempt to show the many microprocessor family members that may
apply under a given column.

See the TASMTABS.TXT on-line document for details on each specific table.

y - Enable Assembly Timing
- Chaos Assembler 3 Help File -

If this option is enabled TASM will generate a statement of elapsed time and assembled lines per
second at the end of the assembly.

TASM. Copyright (C) 1998 by Squak Valley Software.
All rights reserved.

6.6. Environment variables

The TASM environment can be customized by using the environment variables listed below:

TASMTABS

The TASMTABS variable specifies the path to be searched for TASM instruction set definition
tables. If it is not defined then the table(s) must exist in the current working directory. The
following examples illustrate possible usage:

For MSDOS set TASMTABS=C:\TASM
For LINUX TASMTABS=/tasm
TASMOPTS

This variable specifies TASM command line options that are to be invoked every time TASM is
executed. For example, if TASM is being used for 8048 assemblies with binary object file output
desired, the following statement would be appropriate in the AUTOEXEC.BAT file:

set TASMOPTS=-48 -b

TASM. Copyright (C) 1998 by Squak Valley Software.
All rights reserved.

Page 74

- TeddyWareZ -

6.7. Exit Codes

When TASM terminates, it will return to the OS the following exit codes:

Exit Code Definition

Normal completion, no assembly errors
Normal completion, with assembly errors
Abnormal completion, insufficient memory
Abnormal completion, file access error
Abnormal completion, general error

ArWOWN-_0O

Exit codes 2 and above will also be accompanied by messages to the console concerning the
error.

TASM. Copyright (C) 1998 by Squak Valley Software.
All rights reserved.

6.8. Source file format

Statements in the source file must conform to a format as follows (except for assembler directive
statements which are described in a subsequent section):

label operation operand comment

All of the fields are optional, under appropriate circumstances. An arbitrary amount of white space
(space and tabs) can separate each field (as long as the maximum line length of 255 characters
is not exceeded). Each of the fields are described in the following sections.

Label Field

If the first character of the line is alphabetic, it is assumed to be the start of a label. Subsequent
characters are accepted as part of that label until a space, tab, or "' is encountered. The
assembler assigns a value to the label corresponding to the current location counter. Labels can
be a maximum of 32 characters long. Labels can contain upper and lower case letters, digits,
underscores, and periods (the first character must be alphabetic). Labels are case sensitive - the
label 'START' is a different label from 'start’ - unless the '-i' (ignore case) option is enabled.

- Chaos Assembler 3 Help File -

Operation Field

The operation field contains an instruction mnemonic which specifies the action to be carried out
by the target processor when this instruction is executed. The interpretation of each mnemonic is
dependent on the target microprocessor (as indicated by the selected TASM table). The
operation field may begin in any column except the first. The operation field is case insensitive.

Operand Field
The operand field specifies the data to be operated on by the instruction. It may include

expressions and/or special symbols describing the addressing mode to be used. The actual
format and interpretation is dependent on the target processor. For a description of the format for
currently supported processors, see the TASMTABS.DOC file on the TASM distribution disk.

Comment Field

The comment field always begins with a semicolon. The rest of the line from the semicolon to the
end of the line is ignored by TASM, but passed on to the listing file for annotation purposes. The

comment field must be the last field on a line, but it may be the only field, starting in column one,

if desired.

Multiple Statement Lines

If the backslash character is encountered on a source line, it is treated as a newline. The
remainder of the line following the backslash will be processed as an independent line of source
code. This allows one to put multiple statements on a line. This facility is not so useful of itself, but
when coupled with the capability of the DEFINE directive, powerful multiple statement macros
can be constructed (see section on ASSEMBLER DIRECTIVES). Note that when using the
statement separator, the character immediately following it should be considered the first
character of a new line, and thus must either be a start of a label or white space (not an
instruction). As the examples show, a space is put between the backslash and the start of the
next instruction.

Sample Source Listing
Some examples of valid source statements follow (6502 mnemonics shown):

labl lda bytel ;get the first byte
dec bytel
jne labell

lab2 sta byte2,X

; a multiple statement line follows
1lda bytel\ sta bytel+4\ 1lda byte2\ sta byte2+4

TASM. Copyright (C) 1998 by Squak Valley Software.
Page 75

- TeddyWareZ -
All rights reserved.

6.9. Expressions

Expressions are made up of various syntactic elements combined according to a set of
syntactical rules. Expressions can be comprised of the following elements:

e Labels

e Constants

e Location Counter Symbol
e Operators

o Parenthesis

Labels

Labels are strings of characters that have a numeric value associated with them, generally
representing an address. Labels can contain upper and lower case letters, digits, underscores,
and periods. The first character must be a letter or the local label prefix (default '_"). The value of
a label is limited to 32 bit precision. Labels can contain up to 32 characters, all of which are
significant (none are ignored when looking at a label's value, as in some assemblers). Case is
significant unless the '-i' command line option is invoked.

Local labels must only be unique within the scope of the current module. Modules are defined
with the MODULE directive. Here is an example:

.MODULE =xxx

lda regx
jne _skip
dec

_skip rts
.MODULE yyy
lda regy
jne _skip
dec

_skip rts

In the above example, the _skip label is reused without harm. As a default, local labels are not
shown in the label table listing (resulting from the '-I' command line option). See also sections on
MODULE and LOCALLABELCHAR directives.

Numeric Constants

- Chaos Assembler 3 Help File -

Numeric constants must always begin with a decimal digit (thus hexadecimal constants that start
with a letter must be prefixed by a '0' unless the '$' prefix is used). The radix is determined by a
letter immediately following the digit string according to the following table:

Radix Suffix Prefix
2 Borb %

8 Qoro @

10 D or d (or nothing)

16 Horh $

Decimal is the default radix, so decimal constants need no suffix or prefix.

The following representations are equivalent:

1234H or $1234
100d or 100
1774000 or @177400
01011000b or $01011000

The prefixes are provided for compatibility with some other source code formats but introduce a
problem of ambiguity. Both '%' and '$' have alternate uses (‘%' for modulo, '$' for location counter
symbol). The ambiguity is resolved by examining the context. The '%' character is interpreted as
the modulo operator only if it is in a position suitable for a binary operator. Similarly, if the first
character following a '$' is a valid hexadecimal digit, it is assumed to be a radix specifier and not
the location counter.

Character Constants

Character constants are single characters surrounded by single quotes. The ASCII value of the
character in the quotes is returned. No escape provision exists to represent non-printable
characters within the quotes, but this is not necessary since these can be just as easily
represented as numeric constants (or using the TEXT directive which does allow escapes).

String Constants

String constants are one or more characters surrounded by double quotes. Note that string
constants are not allowed in expressions. They are only allowable following the TITLE, BYTE,
DB, and TEXT assembler directives. The quoted strings may also contain escape sequences to
put in unprintable values. The following escape sequences are supported:

Escape Sequence Description

\n Line Feed

\r Carriage return
\b Backspace

\t Tab

\f Formfeed

\\ Backslash

Page 76

- TeddyWareZ -
\" Quote
\000 Octal value of character

Location Counter Symbol

The current value of the location counter (PC) can be used in expressions by placing a '$' in the
desired place. The Location Counter Symbol is allowable anywhere a numeric constant is. (Note
that if the '$' is followed by a decimal digit then it is taken to be the hexadecimal radix indicator
instead of the Location Counter symbol, as mentioned above). The ™ may also be used to
represent the location counter, but is less preferred because of its ambiguity with the
multiplicative operator.

Operators
Expressions can optionally contain operators to perform some alterations or calculations on

particular values. The operators are summarized as follows:

Operator Type Description
+ Additive addition
- subtraction
* Multiplicative multiplication
/ division
% modulo
<< logical shift left
>> logical shift right
~ Unary bit inversion (one's complement)
- unary negation
= Relational equal
== equal
I= not equal
< less than
> greater than
<= less than or equal
= greater than or equal
& Binary binary 'and’
| binary 'or'
A binary 'exclusive or'

The syntax is much the same as in 'C' with the following notes.

e No operator precedence is in effect. Evaluation is from left to right unless grouped by
parenthesis (see example below).

- Chaos Assembler 3 Help File -

e All evaluations are done with 32 bit signed precision.
e Both '="and '=='" are allowable equality checkers. This is allowed since the syntax does
not provide assignment capability (as '=" would normally imply).

The relational operators return a value of 1 if the relation is true and 0 if it is false. Thirty-two bit
signed arithmetic is used.

It is always a good idea to explicitly indicate the desired order of evaluation with parenthesis,
especially to maintain portability since TASM does not evaluate expressions in the same manner
as many other assemblers. To understand how it does arrive at the values for expressions,
consider the following example:

1+ 2*3 + 4

TASM would evaluate this as:
(((L +2) * 3) + 4) =13

Typical rules of precedence would cause the (2*3) to be evaluated first, such as:
1 + (2*3) + 4 =11

To make sure you get the desired order of evaluation, use parenthesis liberally. Here are some
examples of valid expressions:

(0£800H + tab)

(label 2 >> 8)

(label 3 << 8) & $£000

S + 4

010010000100100b + 'a'

(base + ((label 4 >> 5) & (mask << 2))

TASM. Copyright (C) 1998 by Squak Valley Software.
All rights reserved.

6.10. Assembler Directives

Most of the assembler directives have a format similar to the machine instruction format.

Page 77

- TeddyWareZ -

However, instead of specifying operations for the processor to carry out, the directives
cause the assembler to perform some function related to the assembly process. TASM has
two types of assembler directives - those that mimic the 'C' preprocessor functions, and
those that resemble the more traditional assembler directive functions. Each of these will
be discussed.

The 'C' preprocessor style directives are invoked with a '#' as the first character of the line
followed by the appropriate directive (just as in 'C'"). Thus, these directives cannot have a
label preceding them (on the same line). Note that in the examples directives are shown
in upper case, however, either upper or lower case is acceptable.

ADDINSTR
The ADDINSTR directive can be used to define additional instructions for TASM to use
in this assembly. The format is:

[label] .ADDINSTR inst args opcode nbytes rule class shift binor

The fields are separated by white space just as they would appear in an instruction
definition file. See the TASMTABS.TXT file on the TASM distribution disk for more
detail.

AVSYM
See SYM/AVSYM.

BLOCK

The BLOCK directive causes the Instruction Pointer to advance the specified number of

bytes without assigning values to the skipped over locations. The format is:
[Iabel] .BLOCK expr

Some valid examples are:

wordl .BLOCK 2
bytel .block 1
buffer .block 80

- Chaos Assembler 3 Help File -

BSEG/CSEG/DSEG/NSEG/XSEG

These directives can be invoked to indicate the appropriate address space for symbols and
labels defined in the subsequent code. The invocation of these directives in no way
affects the code generated, only provides more information in the symbol table file if the
AVSYM directive is employed. Segment control directives such as these are generally
supported by assemblers that generate relocatable object code. TASM does not generate
relocatable object code and does not support a link phase, so these directives have no
direct effect on the resulting object code. The segments are defined as follows:

Directive Segment Description

BSEG Bit address

CSEG Code address

DSEG Data address (internal RAM)

NSEG Number or constant (EQU)

XSEG External data address (external RAM)

BYTE

The BYTE directive allows a value assignment to the byte pointed to by the current
Instruction Pointer. The format is:

[Iabel] .BYTE expr [, expr ...]

Only the lower eight bits of expr are used. Multiple bytes may be assigned by separating
them with commas or (for printable strings) enclosed in double quotes. Here are some
examples:

labell .BYTE 10010110B
.byte 'a'
.byte 0
.byte 100010110b, 'a"', 0
.byte "Hello", 10, 13, "World"
CHK

The CHK directive causes a checksum to be computed and deposited at the current
location. The starting point of the checksum calculation is indicated as an argument. Here
is the format:

[label] .CHK starting addr
Page 78

- TeddyWareZ -

Here is an example:

start: NOP
LDA #1
.CHK start

The checksum is calculated as the simple arithmetic sum of all bytes starting at the
starting_addr up to but not including the address of the CHK directive. The least
significant byte is all that is used.

CODES/NOCODES

The CODES/NOCODES directives can be used to alternately turn on or off the
generation of formatted listing output with line numbers, opcodes, data, etc. With
NOCODES in effect, the source lines are sent to the listing file untouched. This is useful
around blocks of comments that need a full 80 columns of width for clarity.

DB
This is alternate form of the BYTE directive.

DW
This is alternate form of the WORD directive.

DEFINE
The DEFINE directive is one of the most powerful of the directives and allows string

substitution with optional arguments (macros). The format is as follows:
#DEFINE macro label[(arg list)] [macro definition]

Where:
macro_label
character string to be expanded when found in the source file

arg list
optional argument list for variable substitution in macro expansion

- Chaos Assembler 3 Help File -

macro_def
string to replace the occurrences of macro_label in the source file.

The simplest form of the DEFINE directive might look like this:
#DEFINE MLABEL

Notice that no substitutionary string is specified. The purpose of a statement like this
would typically be to define a label for the purpose of controlling some subsequent
conditional assembly (IFDEF or IFNDEF).

A more complicated example, performing simple substitution, might look like this:
#DEFINE VARL LO(VARL & 255)

This statement would cause all occurrences of the string "VAR1 LO' in the source to be
substituted with (VAR & 255)'".

As a more complicated example, using the argument expansion capability, consider this:
#DEFINE ADD (xx,VY) clc\ lda xx\ adc yy\ sta xx

If the source file then contained a line like this:
ADD (VARX, VARY)

It would be expanded to:
clc\ lda VARX\ adc VARY\ sta VARX

The above example shows the use of the backslash ('\') character as a multiple instruction
statement delimiter. This approach allows the definition of fairly powerful, multiple
statement macros. The example shown generates 6502 instructions to add one memory
location to another.
Some rules associated with the argument list:

Use a maximum of 10 arguments.

Each argument should be a maximum of 15 characters.
Note that macros can be defined on the TASM command line, also, with the -d option
flag.

DEFCONT
The DEFCONT directive can be used to add to the last macro started with a DEFINE
directive. This provides a convenient way to define long macros without running off the

Page 79

- TeddyWareZ -

edge of the page. The ADD macro shown above could be defined as follows:
#ifdef labell

#DEFINE ADD (%%, YY) clc lda bytel
#DEFCONT \ lda xx felse

#DEFCONT \ adc yy lda byte2
#DEFCONT \ sta xx #endif

#ifndef labell

ECHO lda byte2
e —— . . #el

The ECHO directive can be used to send output to the console (stderr). It can accept © sida bytel
either a quoted text string (with the standard escape sequences allowed) or a valid #endif

expression. It can accept only one or the other, however. Multiple instances of the

directive may be used to create output that contains both. Consider the following #if (3 >= 1000h)

; generate an invalid statement to cause an error
; when we go over the 4K boundary.

'l PROM bounds exceeded.

fendif

example:

.ECHO "The size of the table is "
.ECHO (table end - table start)
.ECHO " bytes long.\n"

END
The END directive should follow all code/data generating statements in the source file. It
forces the last record to be written to the object file. The format is:

This would result in a single line of output something like this:
The size of the table is 196 bytes long.

[label] .END [addr]
EJECT
The EJECT directive can be used to force a top-of-form and the generation of a page The optional addr will appear in the last object record (Motorola S9 record type) if the
header on the list file. It has no effect if the paging mode is off (see PAGE/NOPAGE). object format is Motorola hex. The addr field is ignored for all other object formats.
The format is:
[label] .EJECT
ENDIF
ELSE The ENDIF directive must always follow an IFDEF, IFNDEF, or IF directive and

signifies the end of the conditional block.
The ELSE directive can optionally be used with IFDEF, IFNDEF and IF to delineate an

alternate block of code to be assembled if the block immediately following the IFDEF,

IFNDEF or IF is not assembled. EQU
The EQU directive can be used to assign values to labels. The labels can then be used in
Here are some examples of the use of IFDEF, IFNDEF, IF, ELSE, and ENDIF: expressions in place of the literal constant. The format is:
label .EQU expr
#IFDEF labell
lda bytel Here is an example:
sta byte2 MASK .EQU OFO0H
#ENDIF .

’

- Chaos Assembler 3 Help File - Page 80

- TeddyWareZ -
1lda IN BYTE
and MASK
sta OUT BYTE

An alternate form of the EQU directive is '='. The previous example is equivalent to any
of the following:

MASK = OF0H
MASK =0F0H
MASK = SFO

White space must exist after the /abel, but none is required after the '='.

EXPORT

The EXPORT directive can be used to define labels (symbols) that are to be written to the
export symbol file. The symbols are written as equates (using the .EQU directive) so that
the resulting file can be included in a subsequent assembly. This feature can help
overcome some of the deficiencies of TASM due to its lack of a relocating linker. The

format is:
[lIabel] .EXPORT label [,label...]

The following example illustrates the use of the EXPORT directive and the format of the
resulting export file:
Source file:

EXPORT read byte

EXPORT write byte, open file
Resulting export file:

read byte .EQU $1243

write byte .EQU S12AF

open file .EQU $1301
FILL

The FILL directive can be used to fill a selected number of object bytes with a fixed
value. Object memory is filled from the current program counter forward. The format is

as follows:
[lIabel] FILL number of bytes [,fill value]

The number of bytes value can be provided as any valid expression. The optional

fill_value can also be any valid expression. If fill value is not provided, a default value of
255 ($FF) is used.

- Chaos Assembler 3 Help File -

IFDEF
The IFDEF directive can be used to optionally assemble a block of code. It has the

following form:
#IFDEF macro label

When invoked, the list of macro labels (established via DEFINE directives) is searched.
If the label is found, the following lines of code are assembled. If not found, the input file
is skipped until an ENDIF or ELSE directive is found.

Lines that are skipped over still appear in the listing file, but a '~' will appear immediately
after the current PC and no object code will be generated (this is applicable to IFDEF,
IFNDEF, and IF).

IENDEF
The IFNDEF directive is the opposite of the IFDEF directive. The block of code
following is assembled only if the specified macro label is undefined. It has the

following form:
#IFNDEF macro label

When invoked, the list of macro labels (established via DEFINE directives) is searched.
If the label is not found, the following lines of code are assembled. If it is found, the input
file is skipped until an ENDIF or ELSE directive is found.

1K
The IF directive can be used to optionally assemble a block of code dependent on the

value of a given expression. The format is as follows:
#IF expr

If the expression expr evaluates to non-zero, the following block of code is assembled
(until an ENDIF or ELSE is encountered).

INCLUDE

The INCLUDE directive reads in and assembles the indicated source file. INCLUDESs
can be nested up to six levels. This allows a convenient means to keep common
definitions, declarations, or subroutines in files to be included as needed. The format is as
follows:

#INCLUDE filename

Page 81

- TeddyWareZ -
The filename must be enclosed in double quotes. Here are some examples:

#INCLUDE "macros.h"
#finclude "equates"
#include "subs.asm"

LIST/NOLIST
The LIST and NOLIST directives can be used to alternately turn the output to the list file
on (LIST) or off (NOLIST). The formats are:

.LIST
.NOLIST

LOCALLABELCHAR
The LOCALLABELCHAR directive can be used to override the default " " as the label

prefix indicating a local label. For example, to change the prefix to "?" do this:
[labell .LOCALLABELCHAR "?"

Be careful to use only characters that are not operators for expression evaluation. To do
so causes ambiguity for the expression evaluator. Some safe characters are "?", "{", and

H}".

LSFIRST/MSFIRST

The LSFIRST and MSFIRST directives determine the byte order rule to be employed for
the WORD directive. The default (whether correct or not) for all TASM versions is the
least significant byte first (LSFIRST). The following illustrates its effect:

0000 34 12 .word $1234
0002 .msfirst
0002 12 34 .word $1234
0004 .1sfirst
0004 34 12 .word $1234
MODULE
The MODULE directive defines the scope of local labels. The format is:
[Iabel] .MODULE label

- Chaos Assembler 3 Help File -

Here is an example:
.MODULE module x

lda regx
jne skip
dec

_skip rts

.MODULE module vy

lda regy
jne skip
dec

_skip rts

In the above example, the local label skip is reused without harm since the two usages
are in separate modules. See also section LOCALLABELCHAR directive.

ORG

The ORG directive provides the means to set the Instruction Pointer (a.k.a. Program

Counter) to the desired value. The format is:
[Iabel] .ORG expr

The label is optional. The Instruction pointer is assigned the value of the expr. For

example, to generate code starting at address 1000H, the following could be done:
start .ORG 1000H

The expression (expr) may contain references to the current Instruction Pointer, thus
allowing various manipulations to be done. For example, to align the Instruction Pointer

on the next 256 byte boundary, the following could be done:
.ORG (($ + OFFH) & OFFOOH)

ORG can also be used to reserve space without assigning values:
.ORG $+8

An alternate form of ORG is "*=' or '$=". Thus the following two examples are exactly

equivalent to the previous example:
=+8
$=5+8

PAGE/NOPAGE

Page 82

- TeddyWareZ -

The PAGE/NOPAGE directives can be used to alternately turn the paging mode on
(PAGE) or off (NOPAGE). If paging is in effect, then every sixty lines of output will be
followed by a Top of Form character and a two line header containing page number,
filename, and the title. The format is:

.PAGE
.NOPAGE

The number of lines per page can be set with the '-p' command line option.

SET
The SET directive allows the value of an existing label to be changed. The format is:
label .SET expr

The use of the SET directive should be avoided since changing the value of a label can
sometimes cause phase errors between pass 1 and pass 2 of the assembly.

SYM/AVSYM

These directives can be used to cause a symbol table file to be generated. The format is:
.SYM ["symbol filename"]
.AVSYM ["symbol filename"]

For example:

.SYM "symbol.map"
.SYM

.AVSYM "prog.sym"
.AVSYM

The two directives are similar, but result in a different format of the symbol table file.
The format of the SYM file is one line per symbol, each symbol starts in the first column
and 1s followed by white space and then four hexadecimal digits representing the value of
the symbol. The following illustrates the format:

labell FFFE
label?2 FFFF
label3 1000

The AVSYM directive is provided to generate symbol tables compatible with the Avocet
8051 simulator. The format is similar, but each line is prefixed by an 'AS' and each

- Chaos Assembler 3 Help File -

symbol value is prefixed by a segment indicator:

AS start C:1000
AS read byte C:1245
AS write byte C:1280
AS low nib mask N:000F
AS buffer X:0080

The segment prefixes are determined by the most recent segment directive invoked (see
BSEG/CSEG/DSEG/NSEG/XSEG directives).

TEXT
This directive allows an ASCII string to be used to assign values to a sequence of

locations starting at the current Instruction Pointer. The format is:
[label] .TEXT "string"

The ASCII value of each character in string is taken and assigned to the next sequential
location. Some escape sequences are supported as follows:

Escape Sequence Description

\n Line Feed

\r Carriage return

\b Backspace

\t Tab

\f Formfeed

\\ Backslash

\" Quote

\000 Octal value of character

Here are some examples:

messagel .TEXT "Disk I/O error"
message?2 .text "Enter file name "
.text "abcdefg\n\r"
.text "I said \"NO\""
TITLE
The TITLE directive allows the user to define a title string that appears at the top of each

Page 83

- TeddyWareZ -

page of the list file (assuming the PAGE mode is on). The format is: :NN AAAA RR HH CC CRLF
[label] .TITLE "string"
Where:

The string should not exceed 80 characters. Here are some examples:
.TITLE "Controller version 1.1"

. T . Record Start Character (colon
.title "This is the title of the assembly" ()

.title NN
Byte Count (2 hex digits)
WORD AAAA
The WORD directive allows a value assignment to the next two bytes pointed to by the Address of first byte (4 hex digits)
current Instruction Pointer. The format is:
[label] .WORD expr [,expr...] RR

Record Type (00 except for last record which is 01)

The least significant byte of expr is put at the current Instruction Pointer with the most
significant byte at the next sequential location (unless the MSFIRST directive has been
invoked). Here are some examples:

HH
Data Bytes (a pair of hex digits for each byte of data in the record)

cc
data table .WORD (data table + 1) Check Sum (2 hex digits)
.word $1234
.Word (('x' = 'a') << 2) CRLF
.Word 12, 55, 32 Line Terminator (CR/LF for DOS, LF for LINUX)

The last line of the file will be a record conforming to the above format with a byte count of zero.

The checksum is defined as:
sum = byte count+address hi+address lo+record type+(sum of all data bytes)

TASM. Copyright (C) 1998 by Squak Valley Software. checksum = ((-sum) & ffh)

All rights reserved.
Here is a sample listing file followed by the resulting object file:

0001 0000

0002 1000 .org $1000

0003 1000 010203040506 .byte 1, 2, 3, 4, 5, 6, 7, 8
6.11. Object file formats 0003 1006 0708

0004 1008 090A0BOCODOE .byte 9,10,11,12,13,14,15,16

0004 100E OF10

0005 1010 111213141516 .byte 17,18,19,20,21,22,23,24,25,26
Intel Hex Object Format 0005 1016 1718131A
This is the default object file format. This format is line oriented and uses only printable ASCII 0006 101a -end
characters except for the carriage return/line feed at the end of each line. The format is :181000000102030405060708090A0BOCODOEOF101112131415161718AC
symbolically represented as: :02101800191AA3

:00000001FF

- Chaos Assembler 3 Help File - Page 84

- TeddyWareZ -

Intel Hex Word Address Object Format

This format is identical to the Intel Hex Object Format except that the address for each line of
object code is divided by two thus converting it to a word address (16 bit word). All other fields are
identical.

Here is an example:

:180800000102030405060708090A0BOCODOEOF101112131415161718AC
:02080C00191AA3
:00000001FF

MOS Technology Hex Object Format
This format is line oriented and uses only printable ASCII characters except for the carriage

return/line feed at the end of each line. Each line in the file is of the following format:
:NN AAAA HH CC CRLF

Where:

J

Record Start Character (semicolon)

NN
Byte Count (2 hex digits)

AAAA
Address of first byte (4 hex digits)

HH
Data Bytes (a pair of hex digits for each byte of data in the record)

cccc
Check Sum (4 hex digits)

CRLF
Line Terminator (CR/LF for DOS, LF for LINUX)

The last line of the file will be a record conforming to the above format with a byte count of zero.
The checksum is defined as:

sum =byte count+address hi+address lo+record type+(sum of all data bytes)
checksum = (sum & ffffh)

Here is a sample object file:
;1810000102030405060708090A0BOCODOEOF1011121314151617180154

- Chaos Assembler 3 Help File -

;021018191A005D
;00

Motorola Hex Object Format
This format is line oriented and uses only printable ASCII characters except for the carriage

return/line feed at the end of each line. The format is symbolically represented as:
S1 NN AAAA HH CCCC CRLF

Where:

S1
Record Start tag

NN
Byte Count (2 hex digits) (data byte count + 3)

AAAA
Address of first byte (4 hex digits)

HH
Data Bytes (a pair of hex digits for each byte of data in the record)

cc
Check Sum (2 hex digits)

CRLF
Line Terminator (CR/LF for DOS, LF for LINUX)

The checksum is defined as:
sum = byte count+address hi+address lo+(sum of all data bytes)
checksum = ((~sum) & frh)

Here is a sample file:
S11B10000102030405060708090A0BOCODOEOF101112131415161718A8
S1051018191A9F

S9030000FC

The last line of the file will be a record with a byte count of zero and a tag of S9. The address field
will be 0000 unless and address was provided with the END directive in which case it will appear
in the address field.

Binary Object Format.
This file format is essentially a memory image of the object code without address, checksum or

Page 85

- TeddyWareZ -

format description information.

Note that when this object format is selected (-b option), the -c option is forced. This is done so
that no ambiguity results from the lack of address information in the file. Without the -c option,
discontinuous blocks of object code would appear contiguous.

TASM. Copyright (C) 1998 by Squak Valley Software.
All rights reserved.

6.12. Listing file format

Each line of source code generates one (or more) lines of output in the listing file. The fields of
the output line are as follows:

e Current source file line number (4 decimal digits).

e An optional '+ appears if this is an 'INCLUDE file. (One '+' for each level of INCLUDE
invoked).

e Current Instruction Pointer (4 hex digits). An optional '~' follows the Instruction Pointer if
the line of source code is not being assembled because of an IFDEF, IFNDEF, or IF
directive.

e Resulting code/data generated from this source line (two hex digits per byte, each byte
separated by a space, up to six bytes per line).

e The source line exactly as it appears in the source file.

If paging is enabled (by either the '-p' option flag or the .PAGE directive) some additional fields
will be inserted into the listing file every 60 lines. These fields are:
e Top of Form (form feed).
Assembler identifier (e.g. "TASM 6502 Assembler").
Initial source file name.
Page number.
Title.

If errors are encountered, then error messages will be interspersed in the listing. TASM outputs
error messages proceeding the offending line. The following example illustrates the format:

0001 0000 labell .equ 40h
0002 0000 label2 .equ 44h
0003 0000

0004 1000 start: .org 1000h

- Chaos Assembler 3 Help File -

0005 1000 Eo6 40 inc labell
0006 1002 Eo6 44 inc label?2
tt.asm line 0007: Label not found: (label3)

0007 1004 EE 00 00 inc label3
0008 1007 4C 00 10 Jmp start

0009 100A .end

0010 100A

tasm: Number of errors = 1

TASM. Copyright (C) 1998 by Squak Valley Software.
All rights reserved.

6.13. PROM Programming

A wide variety of PROM programming equipment is available that can use object code in one or
more of the formats supported by TASM. Here are some notes concerning the generation of code
to be programmed into PROMSs:

PRESET MEMORY
It is often desirable to have all bytes in the PROM programmed even if not explicitly assigned a
value in the source code (e.g. the bytes are skipped over with a .ORG statement). This can be
accomplished by using the -c (contiguous block) and the -f (fill) command line option flags. The -c
will ensure that every byte from the lowest byte assigned a value to the highest byte assigned a
value will be in the object file with no gaps. The -f flag will assign the specified value to all bytes
before the assembly begins so that when the object file is written, all bytes not assigned a value
in the source code will have a known value. As an example, the following command line will
generate object code in the default Intel Hex format with all bytes not assigned a value in the
source set to EA (hex, 6502 NOP instruction):

tasm -65 -c -fEA test.asm

CONTIGUOUS BLOCKS
To ensure that TASM generates object code to cover the full address range of the target PROM,
put a .ORG statement at the end of the source file set to the last address desired. For example, to
generate code to be put in a 2716 EPROM (2 Kbytes) from hex address $1000 to $17ff, do
something like this in the source file:
;start of the file
.ORG $1000

Page 86

- TeddyWareZ -
;rest of the source code follows

[source code]

;end of the source code

.ORG S17ff
.BYTE 0
.END

Now, to invoke TASM to generate the code in the binary format with all unassigned bytes set to
00 (6502 BRK instruction), do the following:
tasm -65 -b -f00 test.asm

(Note that -b forces the -c option.)

TASM. Copyright (C) 1998 by Squak Valley Software.
All rights reserved.

6.14. Error messages

Error Message Format

TASM error messages take the following general form:
filename line line number: error message

For example:
main.asm line 0032: Duplicate label (start)

This format is compatible with the Brief editor (from Borland International). Brief provides the
ability to run assemblies from within the editor. Upon completion of the assembly, Brief will parse
the error messages and jump to each offending line in the source file allowing the user to make
corrective edits.

To use this feature, it is necessary to configure a Brief environment variable to specify the
assembly command associated with source files that end in .asm:
SET BCASM = "tasm %s.asm"

- Chaos Assembler 3 Help File -

TASM also needs to know the proper table to use. It can be added above, or the TASMOPTS
environment variable can be used separately:
SET TASMOPTS=-65

ERROR MESSAGE DESCRIPTIONS

Binary operator where value expected
Two binary operators in a row indicate a missing value.

Branch off of current 2K page
An instruction is attempting to branch to a location not within the current 2K byte page.

Branch off of current page
An instruction is attempting to branch to a location not within the current 256 byte page.

Cannot malloc for label storage
Insufficient memory to store more labels. See LIMITATIONS.

Duplicate label
The label for the current line has already been assigned a value. Duplicate label checks are
optionally enabled by the -a option.

File name too short
A file name on the command line is fewer than 3 characters. A two character file name may
be valid, of course, but it is detected as an error to prevent a garbled option flag from being
taken as a source file, which in turn can result in the true source file being taken as the object
file. Since the object file is truncated at startup time, the source file could be clobbered.

Forward reference in equate
An EQU directive is using a label on the right hand side that has not yet been defined.

Heap overflow on label definition
TASM was unable to allocate memory to store the label.

Imbalanced conditional.
An end-of-file was encountered at which time the level of descent in conditional directives
was different from when the file was entered. Conditional directives include IF, IFDEF, and
IFNDEF.

Invalid Object file type.

An object file type was requested by the -g command line option that is not valid. See section
on Option g - Object File Format.

Page 87

- TeddyWareZ -

Invalid operand.
No indirection for this instruction. The first character of an operand was a left parenthesis for
an instruction that does not explicitly specify that as the format. Some micros use the
parenthesis as an indicator of indirection, but putting a layer of parenthesis around an
expression is always a valid thing to do (as far as the expression evaluator is concerned).
The test for this case is only done if the -a4 option is selected. See section on ASSEMBLY
CONTROL.

Invalid token where value expected.
Two binary operators in a row are not allowed.

Label too long.
Labels are limited to 31 characters.

Label value misaligned
The value of a label appears to have a different value on the second pass then it was
computed to have on the first pass. This is generally due to Zero Page Addressing mode
problems with the 6502 version of TASM. Labels that are used in operands for statements
that could utilize Zero Page addressing mode should always be defined before used as an
operand.

Label not found
A label used in an expression was not found in the current label table.

Label must pre-exist for SET.
The SET directive can only be applied to an existing label.

Label table overflow
To many labels have been encountered.

List file open error
TASM was not able to open the specified list file.

Macro expansion too long.
The expansion of a macro resulted in a line that exceeded the maximum length.

Max number of nested conditionals exceeded
Too many levels of IF, IFDEF, or IFNDEF.

Maximum number of args exceeded
Too many macro arguments.

Maximum number of macros exceeded
Too many macros (DEFINEs) have been encountered.

- Chaos Assembler 3 Help File -

No END directive before EOF
The source file did not have an END directive in it. This is not fatal, but may cause the last
object file record to be lost.

No files specified
TASM was invoked with no source file specified.

No such label
A SET directive was encountered for a label not yet defined. The value of labels that are
modified by the SET directive must already exist.

No terminating quote
A double quote was used at the start of a a text string but was not used at the end of the
string.

No indirection for this instruction.
A parenthesis was found around the operand expression. This may indicate an attempt to
use indirection where it is inappropriate.

Non-unary operator at start of expression
A binary operator (such as ') was found at the beginning of an expression. Some micros use
"' as an indirection operator. Since it is also a legitimate operator in an expression, some
ambiguity can arise. If a particular instruction/addressing mode does not allow indirection,
and a "™ is placed in front of the associated expression, the assembler will assume this error.
See the -a8 option of ASSEMBLY CONTROL.

Object file open error
TASM was not able to open the specified object file.

Range of argument exceeded
The value of an argument exceeds the valid range for the current instruction and addressing
mode.

Range of relative branch exceeded
A branch instruction exceeds the maximum range.

Source file open error
TASM was not able to open the specified source file.

Unrecognized directive
A statement starting with a '." or '# has a mnemonic that is not defined as a directive.

Unrecognized instruction
A statement has an opcode mnemonic that is not defined.

Page 88

- TeddyWareZ -
Unrecognized argument
A statement has an operand format that is not defined.

Unknown token
Unexpected characters were encountered while parsing an expression.

Unused data in MS byte of argument
An instruction or directive used the least significant byte of an argument and left the most
significant byte unused, but it was non-zero.

Unknown option Flag.

Invalid option flag has been specified on the command line. invoke TASM with nothing on the
command line to see a list of valid options.

TASM. Copyright (C) 1998 by Squak Valley Software.
All rights reserved.

6.15. Limitations

Maximum number of labels 15000

Maximum length of labels 32 characters
Maximum address space 64 Kbytes (65536 bytes)
Maximum number of nested INCLUDES 4

Maximum length of TITLE string 79 characters
Maximum source line length 255 characters
Maximum length after macro expansion 255 characters
Maximum length of expressions 255 characters
Maximum length of pathnames 79 characters
Maximum length of command line 127 characters
Maximum number of instructions (per table) 1200
Maximum number of macros 1000

Maximum number of macro arguments 10

Maximum length of macro argument 16 characters
Memory requirements 512K

Other Limitations

e The 8048 version of TASM does not check for use of memory beyond any reasonable bounds
(e.g. an 8048 has a maximum address space of 4 Kbytes but TASM will let you pretend that

- Chaos Assembler 3 Help File -

you have 64 Kbytes).

o Expression evaluation has no operator precedence in effect which can make for unexpected
results if not explicitly grouped with parenthesis.

o First page of listing file will not show a user defined title (defined via TITLE directive).

TASM. Copyright (C) 1998 by Squak Valley Software.
All rights reserved.

Page 89

- TeddyWareZ -

M A C RO S ASM 36
#
B D E F CONT ettt ettt e e et e e e e eeeeeee e e e e e e e eeeeeeeeeeeeeeeseeeeeeaeeeeeeeeeeeeeaeaeeeeeaaaaeaaeaeaeaaaaaaaaeaaaaaaaas 77
FEDEFINE ..ottt ettt e e e e e ee e e e ee e e eeeeeeeeeeeeeeeeeeeeee e e e e e e et e e e e eeeaeae e et e aeaaaeaeaaaaaaaaaaaaaes 77
BEELSE ..ottt e e ettt —————————————————t———————————ttt———————tatatattttaatatatataaaaaaaaatataaaaaaaaaaes 77
BEEINDIF ..ttt et et e e e e e e e e e e e ee et e e et e e e aet et e e et et a et ettt ettt et et et et et e e e aa e et et aaaaaaaaaaaaaaaas 77
B oottt e e —e———————————————————————————————t———————t———t———t———tetatatattaatatatatttaaaaaaaaaaataaaaaaaaaaaaaaaaaaes 77
FHIFDEF ..ottt ettt et e e et —e et eete—————teetate ettt et et ettt et et et et et e e et et et ataaaaaaaaaaaaaaaas 77
FHEINDEF ...ttt ettt e et e e e e eeaaeaeeeeeeaeaaaeaeaeaaaaaaaaaaaaaaaas 77
FHINCLUDE ...ttt e ettt e e eee e e e e eeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeaeaeaeaaaeaeaaaaaaaaaaaaaaaaans 77
(
(L7 Yo 1= SR 40
ADDINSTR ..ottt ettt ettt e e e et e et et e e e e e e e et et eaaaaaaaaaaaas 77
= 1< 0 (OO O PP PRPPPORRUPRUPPNt 7
AVSYIM ..ottt ettt e e e e e e et a e e 77
]I 10 - G OUPSPRPPPPPPPPPRt 77
B S G ...oiiititiititit ettt ———————t——————————————————————————————————————attttttttttttatttn bttt tntatntatarrrntnrntnrebernrrrnrnres 77
A I U SUPUPPPPPRPPPRt 77
o7 o N 7
L4 = | OSSOSO PSSO PR PPUPPPPPPPPPRt 77
(010 10T OSSP SO O OSSP UPUPPPPPPPPPPPRt 77
L@ T = OSSOSO SP PP SPUPPPPPPPPPRt 77
5 T 77
IDSEG .o e e e e e et e e e e e e e e e e e e e ——— e e e e et e e et — e e e e e e e e et it e e e e e e e e et e e e e e e e e e aaaaaaaaaaaaaaaas 77
0 T 77
L0 = (@ U POUPUPPPPPPPRPPPRt 77
N L@ PO SPUPPPPUPPPPRt 77
] NN S UPUPRPPPPRPPPPRt 77
0 OSSPSR 77
E X P ettt ettt a——————tebab—————ta———a———————————a——t—att—ttt—ttttttttttttntatntetntetntntntetarerntnrnrnrerernrnrnranns 71
) O] [P SOS PO PPPPPPPPPPPPPRt 77
| RRRRRRRRRRRRRE 77
S OSSOSO PP PPUPPPPPPPPPRt 77
LOCALLABELCHAR ...ttt sttt abas st aeat et s sstsssssssssbsbsbsssssssssbnsssssssnsnsnsnrnnnnnnnnns 77
ST 1S [P OPPS OO UPPPPPPPPPPPPPRt 77
S OSSOSO PP PPUPPPPPPPPPRt 71
IMIODULEuuiiitititiiiititet ettt et b et aeaea b esas et e sessesaasaesssesess st sssetesssssesssetebsbssssnsesnsesnsnsnsnsnsnnnsnnnnnnns 77

- Chaos Assembler 3 Help File -

ST | SRS 77
INOCODES ettt et e et e e et e e saae et e e s ss et e e e s beeeeassbeeeeasseeeeansseeeaansbeeeeansaeeeeansteeeennnees 77
N1 I RSP RR 77
INOPAGE ...ttt ettt e ettt e e sttt e e s ae et e eaasteee e e steeeeanssaeesansbeeeeansaeeeeansbeeeeannteeeeansreeeeanees 77
NN T = SRS 77
Lo o ORISR 26
L0 = T8RRI 71
L (PSPPSR 77
e PSP 77
ST SRS 77
S RSP SR 71,77
I 0 PSP ERSTRRR 77
I OSSPSR 77
LT] LSRR 77
D] =1 C OSSPSR 77
[
AN PSR 29
A
A 48; 50; 54
o o | SRS 2
ADOUE TASIM .ttt e e e ettt e e e a et e e e ettt e e e e aatee e e ettt e e e snteeeeesbeeeeeanbeeeesantaeeeesnbeeaesans 70
=Yoo) [(=P 26
I L SRR 48; 50; 54
X o PR OURRR 26
I | 5 SRR 48; 50; 54
Add active WINAOW 10 PrOJECT. ... ittt e e e sb e e e aabeee e 19
Add all WINAOWS 10 PIOJECT......ceiiiiiiii ittt ettt e e sb e e rb bt e e s aab e e e e abeeeeeas 19
Add external file 10 PrOJECL.......ooiiii e 19
ADDINSTR ..ttt ettt e e ettt e e e ea b et e e e tte e e e e ambeeeeabee e e e anbeeeeeebeeeeeanbeeeeeanbeeeeeanteeeeeareeeeen 77
X L1 1Y TP URROUPRR 76
AdAresSiNg METNOASoeeiiiiiiiiee ettt e et et et et ettt e e et eeeeeeeaeaeaetetaaaaeaaaaaeaees 48
AGE (DD-GRAPH) flES ... itteie ettt et e ettt e e et e e e sttt e e e snbeeeeeabeeeeeanreeeeaans 31
All errors of [ast COMPIlAtION ... e e e e e e e e e e 15
AlLFIIES TN PIOJECE ...t b e e bt e e sa bt e e e sbe e e e e aabe e e e s anbeeeeeaas 17
o] o 7= oI 11 SR 17
All open files and all fileS iN PrOJECLooiii e e e e 17
=0 T 01T (=TT T PSR 11
AND L.t e e ——— e e ———— e e e ——eeeaa—aeeaaa—ateeanteeeeaanraeeeanteeeeannreeeeannes 48; 50; 54
Y o] 0] PSPPSR 7;33
LN = o (= (o 0) S PRSP 22
ASSEMDIET DIFECHIVES ...ttt e e et e e e e e s et e e e e e e e s nbneee s 77
Page 90

- TeddyWareZ -

=TT 0 0]][] g = oSS 9
ASSEMDBIY CONTIOL ...ttt ettt e e e s bt e e e sab e e e e e aabe e e e e sbeeeeens 71
E= 1) (o T8 T o 1= o R 9
F O O) =2 =7 P 74
Automatically insert default header at top of NeW fileS..........coooiiii 7
Automatically save modified files on compile / buildoooviiiiiiiii e 7
AV SY M ettt b e E et R et bt bt e e bt bt e n e e nar e enes 77
B
BDIOS .ttt oLt eh e b e e e e e bt e b et e e bt e e bt et ne e nn e e e nare e nereeaa 36
o] = 1Y 7SOt 39
=TT Y PSPPI 76
DINAIY NUMDET ...ttt e e e bt e e e e bt e e e st et e e e eabe e e e e aabreeeeanbeeeeaan 9
Binary ObJECt FOrM@Lo ettt e s bb e e e aaneee s 71
Binary ObJECt FOrMAL.o ettt e e e saaeee s 84
Binary operator where value eXPectedooouieiiiiiiiiie e 87
0] o T o= || SRR 36
=] 1 O T O S PP P PP PP PPTOPRPT 48; 50; 54
BLOCK .ttt h b ea e R e e e e et e e b et e e E e e e be e e e et e a e e e nare e nneeaa 77
BIOCK MOAE......ceeeeee ettt e e et e e st e e sttt e s et e e b e e e 31
(o] DT =] TSSO T TP PRI 29
TNV e = Y- o SO PRPUPRR 25
BOOKIMAIKS ...ttt et e e et s et e st e e st e e e nn e e e s 40
Branch off of CUMrent 2K PAgE ... e 87
Branch off Of CUMTENt PAGE........coii e b 87
BSEG/CSEG/DSEG/NSEG/XSEG ...ttt 77
o111 L USRS 25
(oW Lo [T aTo J= W o] o] [=Te: F PSPPSRI 29
PUIIAING OF PrOJECES ..o ettt e e nb e e aanee s 28
Building projects and compiling fil€Scoiiiiiiiiiiii e 26
= I O PRSP OU PP PP VSRR 77
C
L0 O PP P TP PP PPPPTRURPRTRI 3
CALL et n et n e r e nareas 48; 50; 54
LOF= 1o (o= U 7;29; 33
Cannot Malloc fOr [abel STOragevuiiiiei e e 87
Cascade
Tiles
Arrange all

T o110 0T == | OSSR 22
CaSE SENSITIVITY .oiei i e e e e e e e e e e e e e e anrrraaaaaeas 17
L0702 T SO U PP PP PP PP P OTPOP 31
L0 O T TP TTEPUPPU PP PP PSP 31

- Chaos Assembler 3 Help File -

O 0 O PEPROTRSR 48; 50; 54
(07 g = o) (1ol 1 =T L= T o F= Y= R 21; 45
(07 g F= 1 =Tt (= 0o =) PR 76
O] | SRR 77
07 o TSR 50
L0 10T SRR 12
Close all (INCIUAING PrOJECL)uueeiiiiiee ettt e e e e e e e e e e et e e e e e e s e e sanbreeaeeeeeaesannreneeaaenas 12
L0 1Y SRR 21
L7001 SRR 37
(07070 (=R oTo)0 0] o] (] 1T0] o NP PRSPPI 36
FoT o [(=Y 0 g o] F=1 L= P 20
(@700 [(=0 Y o F= 1 (= 7SR 40
(@700 [CI =T g o] F=1 (=0 =1 o 1P 11
CODES/NOQCODES ..ottt ettt et e st e e s aa e e e e e staeeeasbeeeeansteeeeesteeesasbeeeeansteeeeennees 77
LoTo] o] gl o =1 1= 1 (- SO 9
(@7 0] o] =1 =Y 14 o o 1SR 34
(010 IO] = I = 1 [] PSR 45
(070 (o] i ¢- | PSR 9
LoTo] o] &= J PP PP PP PP 34
(O70] 00100 T=Y o 4 T Lo [PPSR 75
(OO 1Y NS 3 SRR 4
ot)] o] =1 (o] T =11 = To SRR 28
L7 1 4 1= SR 28
compile all the files iN the ProJECEo e ee e 28
Compile file when building ProjECt.........oouuiiiiii e e 26
(07T g1 o1 LT 1 1= g =T o o TSR 19
Compile "Project FilENamE'..........oo e e b e 19
o7) 0] o1 T IR/ g T [1P 28
[©70] 0 4] 01 L= OO PUPPNE 4
(07T 0] o1 1Yo i =11 LYo PRSPPI 28
COMPIlING OF ONE i€ e e e e e e e e e e e e e st re e e e e e e s e nanreaeaaaeeas 28
ot o] o]1 1o Yo IRV T s To [0 1V A0 PSPPSR 28
[076] 0] 0] (=1 (=X o] o ot To [N 11 S PP 54
(@70 1] = | (PR 76
ContiguOUS BIOCK OUPUL ...ttt e e st e e e e s e e e 71
CONTIGUOUS BLOGCKS ...ttt ettt e st e e e et e e e e sseeessnbeeeeansteeesanteeeeanteeeeannees 86
LoT0] 017 o PSPPSR 39
o7 o] o |19 =1 (=1 0 SRR 31
(670 o Y PP PP PR 15
(070] o)V o]0 0T 110 =To [T PP SPPPPPP 33
Copy palette info t0 CHPDOAIA.oiiiii e e e e e e e e s e aeeaaae s 31
Fote] o) Y/ aTe I = 10 418 (o TV =T .o RSP PPSRRRR 36
O SR OUPRROTRSPR 48; 50; 54
L0 I ORI 48; 50; 54
(O] I | SR PPROTRSPR 48; 50; 54

Page 91

- TeddyWareZ -

L] o O EPROTRSR 48; 50; 54
L] | O RRPROTRSR 48; 50; 54
L] SRR TSR 48; 50; 54
2 I RSP 37
L I I SRR 37
(o101 =] gl Lo 11 [o I 40
L0101 =T ol o701 1 T] o IS SRR 31
L0101 (o g T o T= 1 =Y 4 (=Y (=T L1 (o o TR SRR 31
Custom palette (PAlEtte ©AILOr)........oiiiiii i e e e e e e e reaaae s 33
L | PRSPPI 15
D
5] SRS 77
DA =T To 1 I 1 SRR 44
3 = R 48; 50; 54
Lo 1= o7 oo - P 39
Default DACKGIOUNGeiiiiiiiee ettt e bt e e e s b e e e e st bt e e e et e e e e eaabeeeessabeeeeaan 9
7= =10 i (o)) A o] (o] USRS 9
D= 2= (U] o) (=T | (o101 o T SRR PPP 9
D= =10 L aT= Y= T LY o = o SRR 11
AefaUIt MSX PAIETEuieeiiiee e e e e e e e e e e e e s seteae e e e e e e eeeannreaeeaaeeas 33
Default number system fOr SPrit€ COIOIScoiiuiiiiiiie i a e e e 7
Default number system for Sprite Patternsuviiiii i 7
default ProjECt IFECIONYo et 26
Default ProjeCt AIFECLONYuuiiii ettt e e e b e e e s aabeeeeaans 7
DEF CONT L.ttt ettt ettt e ettt e sttt e e e te e e e e sateeeesassseeeansseeeeaanseeee s nsseeesnssaeeeeasseeeessnaeeeansseeeennnneeens 77
DEFINE ...ttt ettt ettt e e sttt e e e e bt e e s aste et e e esseeeeaansee e e e nte e e e e snaeeeeannee e e e nneeeeanneeeeannneees 77
= T TSIR= 1Y =TT o TSSO UEER 71
1= 11T o SO UEER 75
01T 0] oo USSP 11; 48; 76
Lo LTS =i To] o I 1 SRR 25
Lo LT =T iTo] oI 1 = PSSP 25
3 RS 48; 50; 54
[o IR T I8 1 g o OSSPSR 7
1= (T o USRS 17
DiSAbIe LISHING FilEceiieieiieiee et ettt e e s e saane e s 71
[T E< Yo7 =0 =Y SR 3
Lo TS o {4 Y= PR 25
N | N 2RSS 48; 50; 54
TN o) [To= L= F= o= OSSR 87
3 U 77
E
1O [RSP URTI 77

- Chaos Assembler 3 Help File -

EAIE DULION.....co 11
=Y 11 1o 11T RSO 5;12
o 1o o1 o SRR 45
=T L e a1 o] £= 101 < o - T P 40
o [A oo To LT (=T g o] F=1 (T PSR 20
L=To [(o] EECT =Tl o] o PSP PPPT P OPPTPPPRP 9
o 1 o] g r= o J O PP PP PPPPPPOPP 9
EI48; 50; 54

N | O SRR 77
] SRR 77
€Ml 47
Enable ASSEMDBIY TiMINGottt e aneee s 71
Enable Extended INStruction Set.......... ..o 71
Enable Symbol File GENErationocuueiiiiiiiii e 71
] N RSP URRTR 77
1 RSP RRTP 77
ENVIrONMENT VANADIES ...t e et e e e e s e s e e e e e e e e e aaae 74
O L SRR 77
ERROR MESSAGE DESCRIPTIONS ...ttt ee et e e st e s e e s nnee e e e snnneee s 87
Error MeSSage FOMMALttt e e s s sses s s tnsssststssnsnsnsnsnsnsnnnnns 87
o o 0 =TS =T oY OSSP 87
ESCAPE SEUUENCE ...ttt e e e e e e e et e e e e e ee e e e eeeeeeesaassaeeeeaeeeesanatareeeeeeeaananes 76
R STSR 48; 50; 54
] SRR 12
L O oo [OOSR PSP SPPRPPPPPPPPPPPRt 75
L @0 [OSSPSR S SO PUPRPPPPPRPPPPPRt 75
ey eq o= g Lo BT 0T o= SRR 71
1234 0] 0] = SO 7
) O RSP URI 77
e q 0o) o 14 =T [OOSR 31
export Your image t0 @ .DIMP ..o 31
01 == (o) 13RS 76
extras Of the IMAGE VIEWETuiiiiiiee e e e e e e e e e st e e e e e e s et eaeaaaeeas 31
0 SRS 48; 50; 54
F

1L 0 0= o 11 OSSOSO PP PPPRPPPPPPPPPPPRt 12
File NAME 100 SO ...ttt oot e e e e e e s e ee e e e e e e nneeeeeaeeeeannes 87
1 =R =T eTe o 71 1[o] o [PSPPSRI 37
| TSR 77
Y=Y o T PSPPSRt 71
L112To RPPRRURRRT 17
LiTaTo I T oI {113 [=1 Lo T PP ERPR SRR 17
L 0o I = S OO PP OUPUPUPPPRNY 17
LT I o 1=V o T 1 PRSPt 17

- TeddyWareZ -

] SO 21
FIag FIeld VAIUES ..ottt e st e bt e sbb e e e s aneee s 48
L F= Lo T PSPPI 48
o 0 SRS 9
(0] Lo] o S 9
L(0] 01081 1Y, = R PEPRR SRR 9
Forward referenCe iN @QUALEcooii it e e e e e e e e e e e s e s trreeaeeeeeeanes 87
101 oF=1 1= (= P PRRPR SRS 31
G

L1 SRS 31
GEINBO ettt ettt e e et e e e ettt e e e ettt e e et et e e e s ——eee et —aeee e e teeeeaantteeeannaeee e nneeeeaanrneeeanraeeeanreeenn 4
o< 0= = SRR PPP 7
o< gLt = N = o R PP PU PRSP 7
L SRR 31
L1 SRR 31
L€ To I (o N 11T 11 0 0] o= PSR 17
Graph Saurus Screen 5 BLOAD filES.........uuiiiiiiiii ettt a e e e st reeaaa s 31
Graph Saurus Screen 5 COPY filES.....cci i e e e e aeeaaa s 31
Graph Saurus Screen 7 BLOAD filES.........uuiiiiiiiii ettt e e e et re e e e 31
Graph Saurus Screen 7 COPY filES.....cci it e e e e e e aeeaaa s 31
Lo | <1< T o7 o] o SRS SSPRPRPRPR 28
H

N IR RSP 48; 50; 54
L F=T o I oo T o | SRS 33
Heap overflow on label definitiono 87
HEX ODJECE COUE TaDIE ...ttt e s rbe e e e saneee s 71
LTS =T LYo | o ¢ - SRR 39
L NV R TSRS 44
L0 0 1= o =T - PSPt 47
[0 B 0= £ S PRPRPRR 44
How do | edit these code teMPIALEST?oooii oo e e e e e 11
How do 1 use a default hNEAAEI?oo e s e e as 11
L (01T (o PP PP PPTUPUPPPN 45
How to dock the project Manager? ... e 45
How to get data from the sprite editor in YOUr SOUFCE?ceiiiiiiiiiii e 45
How to get palette data in the image VIEWEI?ooi e 45
How to set the destination file? o e e e e 45
I

DD ettt e e e e e t——e e et t—eeeatteeeeaas—eee e et teeeeataeaeeateeeeeantaaeeaantaeeeanteeeeaanteeeeannreeeennrees 4
IF77

L DEF ..ttt e ea bt e e ht et e e ettt ee e e aate e e e ah et ee e e teeeeeabeeee e e baeeeeanteeeeennreeeeeans 77

- Chaos Assembler 3 Help File -

IEINDIEF .ottt ettt et e e ettt e e s et e e e e eatee e e e aat e et e e e aeeeeaaa st eeeaannaeeeeasnaeeeaannteeeannaeeeanreeeeannneeens 77
IGNOIE CaSE IN LADEISooiiieiii ettt sbb e s 71
IVl et e e e e — e e e e e e ——ee e et —eee e et teeeeaarateeeahreeeaantaeaeeantaeeeaantaeeeaanreeeennnaes 48; 50; 54
1 g E= o Lo 1= YT R 25; 31
IMAJE VIEWET ...ttt a et ettt oo ettt e e a bt et e o bttt e e e s be e e e s bbbt e e s bt e e e e snbe e e e aanneee s 21
Imbalanced CONAItIONAL.ueiiii e e e e e e st e e e e e e e 87
MNP0 PAlEH .. ———— 31
N ettt et e ekt e e e e e hEe e e e e bhe e e e b ee e e e e beeeeeanbee e e e nteeeeeanreaeeenees 48; 50; 54
1 5 RS R 77
INCIEMENTAI SEAICIcoiiiiiiie et e ettt e e e e e s e e e e e e e e s e e e e e e e e e e anne 17
1 SRR SR 48; 50; 54
INDR .ttt e e ettt e e e ettt e e skttt e e e eate e e e e s te e e e e bte e e e e taeaeeaRaeeeeanteeeeaanteeeeeareeeeannreeeennnees 48; 50; 54
I ettt et e e e e et e e e e e e e e e e e ahteeeeahteeeeataeaeeahreeeeanbaeeeaanteeeeaanteeeeaanreeeeannees 48; 50; 54
INTR Lottt ettt et e e e sttt e e e ettt e e e ahte e e e e et te e e e e s tee e e e raeae e e taeeeeabeeeeeanraeeeaanteeeeearreeeeanres 48; 50; 54
LA TST= o OSSPSR PSP PR PUPPPPPPPPPPPPPRt 40
INSTIUCHION SEL ... ittt aaetaeaaaaabetetesaasastsbatsbessbsbsbsbsbnbesssnsnbnbnbesnsnsnsnsnnnnns 48
LTSy (0T T T T [T 1 PSSPt 50
INSTUCTION LIST ...t e e e e st e e e e e s bt e et e et e e e e e aannbebeeeeeeeaanne 48
INtel HEX ODJECE FOIMALt e e e e e e e e e e e e e e e e s entsseeeeeeeeaannes 84
Intel Hex Word Address Object FOrMatcooi i 84
101 (=T 0 = Uo7 SRS R 21
[a1 10T 0131 o] P PP PP POTPTPPPPPN 70
INValid ODJECE fIl@ TYPEot 87
101721 1o [o 07=1 =T oo USSR 87
Invalid token where value eXPeCtedo e e e e e e e e e 87
[N ZoToz-1 i o] o [OOSR PSPPSR PRPPPPPPPPPPPRt 71
J
P et e e e e———e e e ———eeeaa———eeeat—ee e et teee i ateeeeantaeeeaannreeeannreeeannraeas 48; 50; 54
PRSP 48; 50; 54
K
KEY COMDINALIONS ...ttt ettt e e e e e b et e e e e e e s e s bbb e et e e e e e s e annreeeeeeeeas 45
L
I I 4 0T U [SRR 37
Label FIEld 75
Label MuUst pre-eXist fOr SET et e e e et e e e e e e e e ee e e e e e e e e e enneeneeaaeeas 87
(=] o1 I a o] d {o1U 1o [o RN 43; 87
(= o =TI =T oTo o 11 (o] o [PP PRSP 37
Label Table. ... 71
Label table OVEITIOW ... 87
Label 100 [ONG ... oo ———— 87
Label value misaligned............oooi i —————— 87
Page 93

- TeddyWareZ -

[abel value MISAllIGNEd ... ittt sbb e e s 43
LADEIS ...ttt ———————————————————————————————————atntatntntntntntntntntatntntnbnbnbernrnrnrnrnnnnns 76
T S SROPPSS PP PUPRPPPPPPPPPPPRt 21
Last COMPIIEr OULPUL ...ttt e e e e e e e e e e e e e e e e e nteeeeeee e e e e e nnnnneeeaeaeeaanne 15
B 0 RS STSR 48; 50; 54
0 RS 48; 50; 54
D RS 48; 50; 54
I SRS 48; 50; 54
I PRSP RS 48; 50; 54
[0 g1 e= (o] o 1S OO PP PO UPUPRPRRNY 89
I 1 TN 0T 01T I =3 o) OSSR 87
T 8 1= SRS 15
IS 1 L 0 SRS 77
1S3 (g To I {1 O PRSP PUPUP PPN 9
I 1] T I 1= PSPPSRI 71
Listing file FOrMALcoo et 86
IO L0 N Y = @ o RS 77
Location Counter SYMDOL..........eiiiiiiii e e e e e e e e e e e e e e e s nereeeaeeeeeanes 76
ST | RS I Y ST RSP 77
M

MacCro €XPanSioN 100 IONQuuiiiiiiiiiii et e e e e e et e e e e e e e e b e e e e e e e e e 87
Macro expects args but NONE FOUNG...........ooiiiiiiiie e e e e e e enes 43
IMACRO'S.ASM ...ttt ettt e et e e et et e e aate et e e aateeeeaassseeeassaeeeeassaeeeaannseeeansseeeeannseeeeannneeeas 36
NN WINHOW. ...ttt aaa e aaeeeaaaaaaasessesasasasssssssssssasbsbssssssstsbsbatssssnssbnbnbnbnsnnnsnsnsnnnnns 4
Y =TT YT To [0 Y2 4; 45
= L T =TT o L (= S PSPPSRI 34
Math ©VAIUALION ... e e e baaaaabebebabataasbebsbsbsssesbnbabssnbnsnsnsnbnsnsnsnsnnnnns 39
Max number of nested conditionals exceeded.......... ... 87
Y = VT 1= S PO PP PP OOTPPPUPPPN 22
Maximum nNUMDbeEr Of args EXCEEAEM...........iii i e e e e e e e e e s rar e e e e e e e aans 87
Maximum number of MAaCroS EXCEEUEMeiii it s e e s sneeeas 87
Y RS 22
LT aTT 0 04> OO P PP UOTPUPUPPPRN 22
1Y [T=T 0 g To] o 1[N 48; 50
IMINEMONIC ...ttt ettt e e ettt e e e ettt e e e ea e eeeasteeeesataeeeeasteeeesnsseeesansaeeesssaneesanseneennns 37; 54
IMINEMONICS ...ttt ettt e ettt e ettt e e ste e e e e saseeee s sseeeeanssaeeesanseeeesssseeesnssaeeesnssneeesnnneeens 15
IMIODULE ...ttt et e ettt ettt e e e st eeeest et e e esseeeeaesseeeeansaeeesnssaeeesnsseeeessneeeesnssseesannnneens 77
Yo YOO RSSO PUPUPRPPPPPPPPPPPRt 12
MOS Technology Hex Object FOrmMatc.uiiiiiiiiiii e s 84
MOS Technology ObJeCt FOrMaL.........c..viiiiiiiiiiecee e e e e e et e e e e e e e e aanes 71
Motorola Hex ObJECt FOrMAL.........oooi i e e e e e e e e s arrae e e e e e e e aanes 84
1RSI 28
MSX @SSEMDIY PrOGIAMSeeiieiiiee e e ettt e e e e e e e e e e et e e e e e e eaaaatraeeeaeesssssnseeseaaesssasntsseeeeeesaaanns 28
Y S) Q=T o] 1 (= RSP RPRRRNY 34

- Chaos Assembler 3 Help File -

Multiple Statement LINESo ettt e e e e e et e e e e e e e e s nenneeeeeeeeaannn 75
YT o] =AY SRS 76
N
] =R PS 48; 50; 54
=SOSR 26
N E WV ettt ettt e e ettt e e ettt e e e aa bt e ee e aat e et e e eh et eeeeanE e et e aRae et e e R et e e e aanee e e e e nneeeeannteeeeaanneeens 12
NEW OCUMEBNT ...ttt e e e e e e bttt e e e e e s bbb e et e e e e e s b e et et e e e e e eannnbneeeeeeeeaannn 12
New document and add £0 PrOJECT e it eeeeabateesenenenbnbnrnrnrnrnrnne 12
MW LMD AL . ———— 11
NN = SRR 21
No END directive before EOF ... et e e e e e e e e e e e e e annes 87
N o 1 LTS o =T o7 1= SRR 87
No indirection for this INSTrUCHON ... a e e e 87
I\ T TR W o o T =1 o1 USSR 87
NO tErMINALING QUOTE ...ttt e st bt e e nb e e e snneee s 87
Non-unary operator at start Of @XPreSSIiON ... it 87
N O P ettt ettt e e et e e oottt e e bt e e e e b te e e e e haee e e e b eeeeeanbee e e e abeeeeaanteeeeanreeeeenees 48; 50; 54
I\ (o] 4 0 F=1 174> PO PPP S POTPTPUPPRN 22
I\ [0 (= T PO PP PP UPUPPPRNY 48
o101 g o= oyl o)) (=Y TSRO 37
Number of files t0 list @t 'REOPEN'..........eiiiiiiii e e e e e e e s eaeaees 7
NUMEEIC CONSTANTS ...ttt e e et e e e ettt e et te e e e s anae e e e sneeeeesnsneeeesanneeeesnnneeens 76
(0]
Lo o] =T B 1= SR 9
[o)1= 2 11 71
ODbjJeCt File FOrMaAt ettt e et e e e e e e e e e e e e e e e et ee e e e e e e e e annnneneeaaeeas 71
(O] o)L= 1 ST 1= T =Y o R 87
L) RSP PPS 7; 33
(O 0o T [PR RR 50
(O 1] PSSRSO 54
o oo [N 1= (oSSR 54
(O 10]I = PSR 15
o = o SRR 34
L0 o= o PR 12
Open Chaotic Media PIAYerooo et 7
(1= TN 4o F= o = T U PP PPP TSR 31
(O 1= oI o (o] =T o) APPSR 12
O] 1=T i o] o] [=Te o 4 F= g E=To 1= S OO P PR PPP 7
Open song(s) and add 10 liSt........eoi i e 21
open the file after the COMPIlAtION ... e 28
(0] 0121 =T aTo [1= [SRRSO 75
(O] 0=T = iTo] TN 1= o HE PRSPPI 75
Page 94

- TeddyWareZ -

L0 0= = (o] - PR 76
L P ERROTRSP 48; 50; 54
L (SRR 77
L N 1D R PRRROTRSP 48; 50; 54
L@ 1= I o) = o 3 - SRR 89
L@ 1 1=T ol (oo] I 1] o 1= PSPPI 37
L 8 I | R UPEPR TSR 48; 50; 54
L 1 N PRSP 48; 50; 54
L 10 N I S OUPPRROTRSPR 48; 50; 54
L 10 N I O PRRROTRSP 48; 50; 54
L 11 { o U USRS 9
LTV 110U ae] o] =T) 8 1= T O PP PPR 9
L0 YT PSR 40
P

Page LiStING Fileottt ettt et e anb e e anne e 71
PAGE/NOPAGEcooi ittt ettt et e e ettt e e sttt eeeeateeeeeasseeeeaassaeee s ssaeeesnssseeesasseeeesssseesannneeens 77
221 1=1 1 (=8 o111 PRSPt 34
[oF=11=0¢= 3o [o] oo (o TV o o 0 1= o 11 OSSP 31
221121 (= =0 11 o] oSSR 33
22 1LY L= 11 RSO RPRRN 31
ParENtNESIS ...ttt e e e et e e e e e eeee e e e e 76
=) (= PSP P PP UOTPUPUPPPRNY 15
pasteable Z80 data StrUCIUIES.........o e aannes 34
=L =T f o USRS PRSP PRPPPRPPIN 34
2L f 1SS UUUUPSPRPRPRPRIN 34
T 1= USSR 21
01 0TI 2 01 o SRR 11
L =SSP PRI 21
O SRR 48; 50; 54
10T o LT o 38 4 =Y o T PSSPt 40
PreferenCeS / SEINGS . .coii ittt e e e e e e e e e e e e e e s e e e e e e e e e reaaaeaeaaane 21
L ST 1Y 1] o 2R 86
PIOVIBW . ..ottt et e e oottt e e e oo o b b ettt e e e e e e h e e et et e e e e nbn e e et e e e e e anrnnees 9
0 USSR 12
T USRS 21
Problems USING [ADEIScoo et 43
ProbIems USING MACIO'Scoiuiiiiiiiie ettt ettt e sttt e s abe e e snb e e e e snneees 43
[0 o] [=Tox A [T 01T o 1= o ¥ SRS 21
[S]Ee I=Te A g T =T T PO OUPPRP PPN 25; 26
(0T =Tox i g =T g =T =Y SRS 15
PROM PrOgramImMingccciicciieeiee e e ee ettt ee e e e e e st e e e e e e s ettt et e eaeesaseaassaeeaaaessaasasaeseaaesaaassssaneaeeesaannns 86
0] 01T =T OSSPt 26
PU S H ettt e et e e b e e e e et e e e e b be e e e ettt e e e abe e e e e abeeeeaanreeeeannees 48; 50; 54

- Chaos Assembler 3 Help File -

R

Range of argument EXCEEUEA............oi i 87
Range of relative branch eXCeededooouiiiiiiiiiiii e 87
reading SECOrs frOM diSKouiiiiii e 36
1Yo 1o] o SR 28
L=To [0 OO PP PP PPTPUPUPPPRN 15
o153 T g 1 LT 4 1Y P EPRSSP 7
0 15 1= OSSPt 48
(== (0] o = PP PPP T UPTPPPPP 26
TCTE= 1T o= | OO PRSP OTPUPPPPPN 76
=T 0 00 Y USSR 26
Remove active Window from ProjECtcooiiiiiiiii e e 19
RemMOVE SONGS frOM IIST.....cooiiiiii e 21
=07 o 1= o TSR 12
=T o = Lo USSR 17
RIS ettt e e e e e e e e e —ee e e et —eeeeatataeeaahaeeeeatreeeeanteeeeaareeeeaanreeeeanees 48; 50; 54
= RS 48; 50; 54
= PSR 48; 50; 54
= RS 48; 50; 54
RetUrN 1O 1aST POSIIION ...t et et seete s tssssnts s tntnsnsnsssnsnsnsnnnnns 15
R ettt e e e b e e e e e eate e e e e bttt e e e Eee e e e aEe e e e e e beeeeaanteeeeeanteeeeannreeeeannees 48; 50; 54
R A ettt et e et e e e e e eh bt e et et Ee e e e e Eee e e e e Rt e e e e anbteeeaanteeeeeanaeeeeaanreeeeennees 48; 50; 54
R ittt ettt e e e et e e et e ——e e e e e ahte e e e e taee e e e baeeeeateeeeearaeeeaanteeeeanreeeeennres 48; 50; 54
R A ettt et e et e e e e e e e e et — e e e eh—ee e e e taeeeeanar e e e e haeeeaanbeeeeeabeeeeaantaeeeanreeeeennaes 48; 50; 54
I RS 48; 50; 54
RIR ettt e e e e e e e e e —— e e e e ah—eee e e taeeeea——e e e e e baeeeaabaeeeeateeeeaantaeeeaanreeeeennaes 48; 50; 54
R R A ettt ettt e e et et e e e e et e e e —eee e e ——eee e e taeaeeahreeeeataeeeaanteeeeeateeeeaanreeeeanees 48; 50; 54
RR C .ottt et e e e ettt e e sttt e e e e et e e e aatee e e e hte e e e e taeaeeahae e e e aatreeeaanteaeeaateeeeaanreeeeannees 48; 50; 54
RIR C A ettt e e oottt e e e b et e e e b e e e e e e hee e e e e bee e e e anbee e e e aabe e e e e anteeeeanreeeeennaes 48; 50; 54
D SRR 48; 50; 54
SRR RR 48; 50; 54
S

ST T1a] o] (IS o0 ot Y I L] 11 0o [PPSR 75
SV ettt ettt e oo oo e eeeaeaeaateeaaaaaaaaataaaaaaaaaaaaaaaaaaaaaaas 34
= Y P 12
= Y- | P 12
IS T= Y- R 12
oYY o] f o] =Ted AT T PRSPPI OPPRR 12
TSP RP 48; 50; 54
@10 = - =) o N SRR 29
T SRR 48; 50; 54
Lo (o7 o i (o PSP 17
SEAICH TTOM CAIEL..... . ittt e e e ettt e e e sttt e e e e nbe e e e enbe e e e e anbeeeeennteeeennnees 17

- TeddyWareZ -

SEAICN INTIIES oo 17
S T=T= (o] o I 41T o T 17
SEArCN IESUIL 17
SEAMCIING FOF ...ttt e e e bttt e e e e e e e e b b et e e e b be e e e e bee e e e anees 17
SEIECT @ COION . 34
ST =T =T =1 1= =Y o SRR 9
SEIECE DIOCKS ...t e e ettt e e e e e e s e e e e e e e reaeeaae s 31
SEIECTEA CIEMENT ...t e e e e e e e e e e e e e et e e e e e s e e e e e as 9
S TC (= Ter (=To IR (=) (o Y PRSPPI 17
ST SRR 48; 50; 54; 77
Set Number of Bytes per ObJect RECOIT............uiiiiiiiii e 71
Set Read BUFfEr SIzZe........cooooii 71
SELHNG PAIETIES ... e 36
SEHNG VRAM PAGES ..ottt e et e s e e b e e e 36
SQNAMBWAIEo 71
SNOMCUL. ... 40
SROMCUL NMAMIE.....ceiiii ettt e e e e et e et e e e e e aaa bbb e e e e e e e s e annbereeaaeeas 11
SNOW tiPS ON STAMTUD ...vvieiiee i e e e e e e e e e e e st e e e e e e e e saaabsbaeeaaaesssanraneeeeaeeaannnes 7
S PSSR 50
S 4 YR TSRSTR 9
S A ettt e e et e e e e aa b e e e e ettt eeeeaateee e et eeee e e baeeeeaabeeeeeabaeeeeanteeeeeanneeeeens 48; 50; 54
ST F= TN 0 2= SRRSO 47
SOUICE il e 25
Source file fOrmMat 75
S To LWL ot 1 TSR o o T=Y g T =Y o 87
SPRITE EDITINGottt ittt ettt e et e st e e st e e e e s ssaeesassteeeeasteeeeenstaeesannseeeeansaeeesennees 45
L] 0] (=0 1o) PSR 34
ST o1 (=N =011 o SRR 21
L] oL L L= 1 o o L= PRSP PSSPRRR 34
SPrite MOAE SEIECHIONciii i e e e e e e st e e e e e e s e eaabe e e e e aeeesannnreaeaaaenas 34
L] o LT PRSP PESSRPRRR 34
ST T PSR 31
ST/ PP RR 31
T RO RROTRRP 48; 50; 54
T O PROTRSP 48; 50; 54
STALUS DA 31
S o] o TSR 21
SHNG CONSTANES ...ttt e e bttt e s e e e e e ebbe e e e eanes 76
ST RSP RPORSP 48; 50; 54
S T0] o] o] o S SRR 47
SYMIAVSYIM ...ttt ettt ettt e e et e e s st et e e e s tee e e e nteeeeannbeee e e neeee e e s beee e annbeeeeennreeeeanes 77
SYMDBDOI DESCHIPHONSuveiiiiieiiie ettt e e e e e e e e e e e e e e st a e e e eaeeseasssbaaeeeeaesaanasnreaeaaaeeas 48
Y] ool =)o To T 1 [EPRSPPRRP 71
Y] ool I = o] [N 1= PRSPPI 71
L1 = PSSR 76

- Chaos Assembler 3 Help File -

Syntax options for the TASM COMPIIET....... ... e e e e 9
T

LA = 3 =T =Tt (= S PP P PP PP PP PP PPPPPPPP 9
L= 1 o] X 1 = 1o 4 LS P P P PP P PP PPPP PP PPPPPP 71
BLIE=L o L= o oo 1 (=1 o1 £ 70
1720 PSR 4; 28
TASM CharaCteriSTICSeeiiiiiiie ittt ettt e e ettt e e e sa e e e sttt e e e sabe e e e e sbeeeeesnbaeeesanteeeeean 70
TASM ENVIFONMENT. ...ttt e e e ettt e e ettt e e e e ettt e e e sttt eeeanteeeeesbeeeeeanbaeeesantaeeeeanseeeesns 74
B IS Y I Yo T o OSSR 7
TASMOPT S .ttt ettt e e ettt e e e ea b et e e e aateee e e aateeeeesteeeeaabeeeeeenbeeeeeabbeee e e beeeeeantaeeeeareeeeen 74
NS LY 1Y = 1 PRSP 74
I 5 PSRRI 4
TEAUYWAIEZ ... ettt a et e bttt e e et bt e e e e b bt e e e sab bt e e e aa b et e e e sbeeeeeaabeeeeaan 47
TeddyWareZ reCOVEIY SYSTEM ittt e e rb et e e e sb e e s ab e e e e e anbeeeeeaas 43
Telemark ASSEMDIET ettt e e e e ettt e e e e e e e e ee e e e e e e e e e annneeeeeeaee e e nnneneas 70
L= 0] o] =1 =S 11
L= 0 0] =1 G 1 (= 1 1SR 1
L= 00 01 =1 G 1 =1 0 LU PSPPSR 20
I =0 PP RRPPURSR 77
THE IMAQGE VIEWET ...ttt ettt e et e e ettt ee et eeeeeeeeeeee e e e e e e et et e e et eeeeeaeeeeeaeeaeaaaaatatataaaaaeaeaeaaeees 45
B (= o (=T o2 2 =T =T =T PP 26; 45
L LT LI oL LY=o L1 (o] PSP REPRPRPRPRP 45
I 0P PRROURR 84
I 1 PR SURRR 77
100 o 1N o TU | 4 (o o < S 26
TIOOIDAIS ...ttt ettt e et ee e e e e eeeeeeeesese e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeaaeeeeaaeeeeaeaeeaaaaaaaaaaaaaaaaaaaaaaaaaaas 15
IO L@ I 1 PP RRORRRR 44
Lo e= LI o101 q] oY o)=Y o] SRS 28
Lo 18 o 1= K] g VoY i1 o TSRS 43
LIS =1 (T PP PPPPPPTOR 37
18] S LIE= L e IR = T o o RSP PPPRRR 17
u

= PP PPPRNt 76
L] 0o [J SO PSP OPPRPRPPPPPPPPPRt 15
LU T o (o A (=Y [1SR 40
UNKNOWN OPLION FIAQ. ...ttt ettt bt e e sbn e e e snneee s 87
UNKNOWN TOKEN...... ittt ae e aaaaasteasaeaaasbebstsbasssstsbsbsbssnbsbsbsbnbsbssnsnsnbnbnsnsnsnsnsnnns 87
(UL aT0) i {[1T- | I 54
UNrecognized argUIMENT..........uiiiiiiieie ettt ettt a bt e e s aan et e e s s et e e sbb e e e e sanneee s 87
UNFECOGNIZEA AIFECHIVE ... 43
L8 o =ToTo o [a1 4=Yo [11 4= o1 117 PRSPt 87
UNreCogNIiZed INSIIUCTION ... 43

- TeddyWareZ -

UNrecognized INSITUCTION.........eiii ettt e e e nb e e aaneee s 87
Unused data in MS byte of argument ... 87
L0 LTI T o 1 o (= o | SR 9
"4

RV 4L V0 0= o U PSR 15
(L LU= 1 7] (o SO PO PPP TP PP 34
w

VB A S S ..ttt e ettt e e e a e e et e e a e et e et beee e e R hee e e e nbee e e R beeeeannteeeeanbeeeeannreeeeanrees 4
What is @ COAE tEMPIALE? ... e e e e e e e e e e e et re e e e e e s s e nnnrraeeaaeeas 11
What is @ default REATEIT ...t e e e e e e e e e nae e e e e ees 11
What is code COMPIELIONT ...ttt e e e e et e et e e e e e et ee e e e e e e e e ennneneaaaeeas 36
What to do if an access VOilation OCCUIS?o i e e e 45
WHOIE WOPAS ONIY ...ttt ettt e e e bt e e e s b e e e e s bt e e e e e nnre e e e enees 17
LT o 2SRRI 3
Why Chaos ASSEMDIET 37 ...ttt e e e e e bt e e s enbe e e e enees 3
V7o T 10T o1 11] o o =1 g o [15
(VLT Lo = o] o =Y RSP PSSP 7
LT SRR 77
LA = o] 1= SRR 4
VUV ettt ettt e e e ettt e e oo ettt e e ekttt e e ekt e ee e e bae e e e anbee e e e R b ee e e e e beeeeeanteeeeanteeeeeanaeeeeenres 47
X

D PSP 48; 50; 54
V4

0 Yo] 0 ¢ 18 101 o] o = P 34
o To] .4 1o 1= = 11 || PSR 31
7o Yo .4 1o S 31
7o To .4 1 11 | PR 31

- Chaos Assembler 3 Help File -

Page 97

- TeddyWareZ -

- Chaos Assembler 3 Help File - Page 98

