
 Zoran Majcenic

ARTISAN BASIC
MSX-BASIC extension

2

CONTENTS

INTRODUCTION .. 5

EXTENDED MEMORY SUPPORT ... 7

BITMAP OPERATIONS .. 9

ANIMATION SUPPORT ... 10

New sprite control system ... 11

Animation data memory handling 12

BASIC program overall structure 12

SOUND PLAYER .. 14

Data decompression .. 15

Disk loading ... 16

HELPER FUNCTIONS .. 17

BUILDING BINARIES .. 18

ALPHABETICAL LIST OF COMMANDS 19

ANIMCHAR .. 19

ANIMDEF ... 20

ANIMITEMPAT .. 21

ANIMITEMPTR ... 22

ANIMSPRITE .. 24

ANIMSTART .. 25

ANIMSTEP ... 26

3

ANIMSTOP .. 28

ARTINFO .. 29

AUTOSGAMDEF .. 30

AUTOSGAMSTART... 33

AUTOSGAMSTOP ... 34

BLIT ... 35

BOXMEMCPY .. 36

BOXMEMVRM ... 38

COLL .. 40

DLOAD .. 42

FILRAM .. 44

FILVRM .. 45

GENCAL ... 46

MAXANIMDEFS ... 47

MAXANIMITEMS ... 48

MAXANIMSPRS ... 49

MAXAUTOSGAMS ... 50

MEMCPY .. 51

MEMVRM ... 52

SGAM .. 53

SNDPLYINI .. 54

SNDPLYOFF .. 55

4

SNDPLYON ... 56

SNDSFX .. 57

SPRDISABLE .. 58

SPRENABLE ... 59

SPRGRPMOV ... 60

TILERAM .. 62

TILEVRM .. 64

UNPACK .. 65

VRMMEM ... 66

VUNPACK .. 67

INFORMATIONAL DATA ... 69

APPENDIX A – HOW TO ACCESS FUNCTIONS VIA DEFUSR

COMMAND ... 71

APPENDIX B – HOW TO SAFELY LOAD EXTENSION 76

5

INTRODUCTION

ARTISAN BASIC is an extension of MSX BASIC. It is targeted

at MSX1 machines with 64Kb memory and a disk system.

The idea for development came after competing in MSX

BASIC competition.

https://www.msxblog.es/concurso-msx-basic-9o-edicion/

I have always felt that the capabilities of the machine could

have been better exploited under BASIC.

The main areas that ARTISAN extension is focusing on are:

• Extended memory support

• Bitmap operations

• Animation support

• Sound player

• Data decompression

• Disk loading

• Helper functions

Extension loads itself in page 1 at address #4000 and

provides several new commands. Following sections will

describe main functionality groups and details about each

new command are given later. Refer to the table of contents.

Version Date Description

0.8 Initial version

https://www.msxblog.es/concurso-msx-basic-9o-edicion/

6

0.9 15.12.2022 Extension available in two flavors:
as commands or DEFUSR calls

ARTINFO command added

0.91 8.8.2023 Added sprite update bit in
MEMVRM

0.92 4.6.2024 Added UNPACK and VUNPACK

0.93 24.6.2024 Added DLOAD and DEFUSR return
code

7

EXTENDED MEMORY SUPPORT

Standard MSX BASIC allows access to 32Kb of memory. In

64Kb systems there is another 32Kb hidden beneath ROM in

pages 0 and 1. ARTISAN basic allows memory to be copied

to and from this upper 32Kb. Additionally copying to and

from VRAM can come from and to this upper 32Kb.

Commands from other sections that take memory buffers as

parameters can read data from this area of memory. There

are also a few commands that allow copying data from and

to VRAM.

Commands included are:

• BOXMEMCPY

• BOXMEMVRM

• FILRAM

• FILVRM

• MEMCPY

• MEMVRM

• VRMMEM

8

Since ARTISAN BASIC code also resides in this upper 32Kb,

not all of it is free for use by programs. Memory map is given

below:

ARTISAN BASIC does not occupy any memory below

&H8000 allowing BASIC programs to have the same amount

of free memory for code and variables as without the

extension.

9

BITMAP OPERATIONS

Several functions are provided to allow working with

software sprites and tiling. Software sprites are defined by

their data and mask that gets applied to background. Tiling

functions allow placing data in a memory buffer or in video

memory in a sequential fashion, when you want to apply one

pattern over a larger area.

Commands included are:

• BLIT

• TILERAM

• TILEVRM

10

ANIMATION SUPPORT

This section allows the creation of animation definitions that

execute regularly based on VDP interrupt. Animation

definitions allow changing of sprite pattern number, pattern

data or changing character data.

To enable sprite animations, sprite handling has been

revamped. Instead of PUT SPRITE commands one needs to

define an array where sprite data is kept. This is transferred

to VRAM on each interrupt.

Additionally grouping of sprites is supported which allow

simultaneous moves and animation.

Commands in this section are grouped into several sections:

• Basic sprite handling system

o SPRDISABLE

o SPRENABLE

• Group of sprites handling

o SPRGRPMOV

• Animation definitions

o ANIMITEMPAT

o ANIMITEMPTR

o ANIMDEF

o ANIMSPRITE

o ANIMCHAR

o AUTOSGAMDEF

• Animation control

11

o ANIMSTART

o ANIMSTOP

o ANIMSTEP

o AUTOSGAMSTART

o AUTOSGAMSTOP

o SGAM

• Animation memory buffers

o MAXANIMDEFS

o MAXANIMITEMS

o MAXANIMSPRS

o MAXAUTOSGAMS

NEW SPRITE CONTROL SYSTEM

The use of sprites is modified in ARTISAN basic in the

following ways:

• Sprite attributes (location, pattern and color) are

kept in an integer BASIC array of size (3,31)

• Values from the array are passed to VRAM during

vertical blank if indicated by a specified integer

variable

• Sprite control system is activated by SPRENABLE

command

• When the system is active one should not run any

commands that modify VRAM because of possible

collision with sprite update

• When the system is active no new variables can be

declared as this will cause corruption of the sprite

control system

12

ANIMATION DATA MEMORY HANDLING

Defining animations requires some memory usage. This is

located directly after the ARTISAN basic code in the

segment &H4000-&h7FFF. That is why free memory in this

segment depends on how many animations are defined. It is

necessary to declare the maximum amount of each type of

animation information before the use of definition

commands. There are 4 types of definitions:

• Animation item – defines a single state

o Sprite pattern, color and duration

o Sprite/character pattern definition pointer

and duration

• Animation definition – list of animation items to run

• Sprite/Character animation – link between which

sprite/character to animate and with which

animation definition

• Automatic Sprite Group Animation and Movement –

automatic animation and movement between

defined bounds of a sprite group

BASIC PROGRAM OVERALL STRUCTURE

The layout of the program that uses the sprite control

system and animations is as follows:

• Declaration of all variables

• Declaration of sprite attributes array and the sprite

update variable

o SU%=0:DIM SA%(3,31)

13

• Reset of memory buffers for animations by defining

zero size

• Resizing of memory buffers to required values

• Obtain free memory location in page 1 using

MEMCPY(&H4010,VARPTR(A%),2) where A% was

previously defined or using ARTINFO

• SPRENABLE (SA%,SU%,0/1,32)

• ON ERROR GOTO definition

• ON STOP GOSUB definition

• Main program

• On end/error/stop run:

o Stop animations

o SPRDISABLE

14

SOUND PLAYER

ARTISAN basic includes the AKG player from ARKOS tracker

https://www.julien-nevo.com/arkostracker/

in version 2.01

Sound data should be exported from the Arkos tracker in

binary format. Memory location can be in the first two

memory pages.

Commands included in this section are:

• SNDPLYINI

• SNDPLYOFF

• SNDPLYON

• SNDSFX

https://www.julien-nevo.com/arkostracker/

15

DATA DECOMPRESSION

Commands in this section are related to ZX0 format

https://github.com/einar-saukas/ZX0

Standard Z80 decompressor is implemented with ability to

decompress into RAM or VRAM.

Commands included here are:

• UNPACK

• VUNPACK

https://github.com/einar-saukas/ZX0

16

DISK LOADING

An alternative to BLOAD is provided which allows loading

from disk directly into upper 32k as well as below.

Command in this section is:

• DLOAD

17

HELPER FUNCTIONS

This includes various functions that do not belong in previous

sections and provide various functionality.

Commands included here are:

• ARTINFO

• GENCAL

• COLL

18

BUILDING BINARIES

Code is segmented in several function groups which can be

excluded or included. By default, all functions are included.

Flags controlling which sections are included can be found in

file main.asm at the beginning.

Additionally, code allows access to functionality via basic

CALL command or via DEFUSR command.

This is controlled via compiler options

-DBASIC_EXTENSION=0/1

-DDEFUSR_EXTENSION=0/1

Unfortunately, both types of access would result in binary

that is over 16Kb and thus unusable.

Because of this, by default, two types are provided in the

disk image as:

ARTISANE.bin – for BASIC commands

ARTISAND.bin – for DEFUSR access

More information can be found in sections

INFORMATIONAL DATA and APPENDIX A

19

ALPHABETICAL LIST OF COMMANDS

ANIMCHAR

Defines single character animation sequence.

Format:

ANIMCHAR (byte ID, integer

character_number, byte

animation_definition_id, byte

cyclic_flag)

Where:

ID is between 0 and MAXANIMSPRS-1 value

character_number specifies the character to animate

(0-767)

animation_definition_id is between 0 and

MAXANIMDEFS-1

cyclic_flag of 0 means that the animation will run one

time only, other values mean a looping animation

Prerequisites:

• MAXANIMSPRS reserved memory for definition

• Animation definition prepared with ANIMDEF

Errors:

• Invalid type if incorrect type passed

20

• Subscript out of bounds if parameters outside of

allowed range

Example:

_ANIMCHAR(0,255,0,1)

Sample code:

• ANIMTEST.BAS

• GAME.BAS

ANIMDEF

Defines a list of animation items which is later associated

with a character or a sprite.

Format:

ANIMDEF (byte ID, byte size, integer[]

values)

Where:

ID is between 0 and MAXANIMDEFS-1 value

size is number of animation items (1-15)

values holds animation item IDs that form this animation

definition

Prerequisites:

• MAXANIMDEFS reserved memory for definition

21

• Animation items prepared with

ANIMITEMPTR/ANIMITEMPAT

Errors:

• Invalid type if incorrect type passed

• Subscript out of range if ID invalid

• Overflow if size outside 1-15 range

• Index out of bounds if values array smaller than size

parameter

Example:

DIM V%(1):V%(0)=0:V%(1)=1

_ANIMDEF(0,2,V%)

Sample code:

• ANIMTEST.BAS

• GAME.BAS

ANIMITEMPAT

Defines a single animation state where sprite pattern and

color are specified. Usable for sprites only.

Format:

ANIMITEMPAT (byte ID, integer ticks, byte

pattern, byte color)

Where:

22

ID is between 0 and MAXANIMITEMS-1 value

ticks is number of interrupts that this animation item lasts

before stepping over to the next state as defined in

animation definition (>0)

pattern specifies sprite pattern to apply to a sprite

color specifies the color to apply to a sprite

Prerequisites:

• MAXANIMITEMS reserved memory for definition

Errors:

• Subscript out of range if ID invalid

• Overflow if ticks=0

Example:

_ANIMITEMPAT(0,4,5,6)

Sample code:

• ANIMTEST.BAS

• GAME.BAS

ANIMITEMPTR

Defines a single animation state where pattern data is

specified. Applicable to sprites and characters.

Format:

23

ANIMITEMPTR (byte ID, integer ticks,

integer pointer)

Where:

ID is between 0 and MAXANIMITEMS-1 value

ticks is number of interrupts that this animation item lasts

before stepping over to the next state as defined in

animation definition (>0)

pointer is a memory location where pattern data is

located, can be in pages 0 and 1.

Prerequisites:

• MAXANIMITEMS reserved memory for definition

Errors:

• Subscript out of range if ID invalid

• Overflow if ticks=0

Example:

_ANIMITEMPTR(1,3,&H2000)

Sample code:

• ANIMTEST.BAS

• GAME.BAS

24

ANIMSPRITE

Defines single sprite animation sequence.

Format:

ANIMSPRITE (byte ID, integer

sprite_number, byte

animation_definition_id, byte

cyclic_flag)

Where:

ID is between 0 and MAXANIMSPRS-1 value

sprite_number specifies the sprite to animate (0-31)

animation_definition_id is between 0 and

MAXANIMDEFS

cyclic_flag of 0 means that the animation will run one

time only, other values mean a looping animation

Prerequisites:

• MAXANIMSPRS reserved memory for definition

• Animation definition prepared with ANIMDEF

Errors:

• Invalid type if incorrect type passed

• Subscript out of bounds if parameters outside of

allowed range

25

Example:

_ANIMSPRITE(0,5,0,1)

Sample code:

• ANIMTEST.BAS

• GAME.BAS

ANIMSTART

Starts animation sequence.

Format:

ANIMSTART (byte ID)

or

ANIMSTART (byte item_number, integer[]

sprite_animations)

Where:

ID is between 0 and MAXANIMSPRS-1 value

item_number specifies the number of animations in the

array

sprite_animations array holds animation ids to start

simultaneously

Prerequisites:

• Animation definition prepared with ANIMDEF

26

Errors:

• Invalid type if incorrect type passed

• Subscript out of bounds if parameters outside of

allowed range

Example:

_ANIMSTART(1)

Or

DIM A%(2):A%(0)=0:A%(1)=1:A%(2)=2

_ANIMSTART(3,A%)

Sample code:

• ANIMTEST.BAS

• GAME.BAS

ANIMSTEP

Manually progresses animation which is not started with

ANIMSTART.

Format:

ANIMSTEP (byte ID)

or

ANIMSTEP (byte item_number, integer[]

sprite_animations)

27

Where:

ID is between 0 and MAXANIMSPRS-1 value

item_number specifies the number of animations in the

array

sprite_animations array holds animation ids to step

simultaneously

Prerequisites:

• Animation definition prepared with ANIMDEF

Errors:

• Invalid type if incorrect type passed

• Subscript out of bounds if parameters outside of

allowed range

Example:

_ANIMSTEP(1)

Or

DIM A%(2):A%(0)=0:A%(1)=1:A%(2)=2

_ANIMSTEP(3,A%)

Sample code:

• ANIMTEST.BAS

• GAME.BAS

28

ANIMSTOP

Stops animation sequence.

Format:

ANIMSTOP (byte ID)

or

ANIMSTOP (byte item_number, integer[]

sprite_animations)

Where:

ID is between 0 and MAXANIMSPRS-1 value

item_number specifies the number of animations in the

array

sprite_animations array holds animation ids to stop

simultaneously

Prerequisites:

• Animation definition prepared with ANIMDEF

Errors:

• Invalid type if incorrect type passed

• Subscript out of bounds if parameters outside of

allowed range

Example:

29

_ANIMSTOP(1)

Or

DIM A%(2):A%(0)=0:A%(1)=1:A%(2)=2

_ANIMSTOP(3,A%)

Sample code:

• ANIMTEST.BAS

• GAME.BAS

ARTINFO

Provides information about ARTISAN basic extension. This

includes version, flags used to build it and free memory start

position in page 1.

Note that this command is always available regardless of

how ARTISAN basic was compiled and can be used to test if

the extension is installed.

Format:

ARTINFO (int variable version, int

variable flags, int variable free_memory)

Where:

version is a variable receiving version info in the form as

described under INFORMATIONAL DATA

30

flags variable holds build flags for the solution as

described under INFORMATIONAL DATA

free_memory variable holds memory location in page 1

where free memory begins.

Prerequisites:

• None

Errors:

• Invalid type if incorrect type passed

Example:

V%=0:F%=0:M%=0

_ARTINFO(V%,F%,M%)

Sample code:

• AUTOEXEC.BAS

AUTOSGAMDEF

Defines automatic sprite group animation and movement

between specified bounds.

Format:

AUTOSGAMDEF (byte ID, integer variable x,

integer variable y, integer minimum,

integer maximum, integer delta, integer

direction, integer ticks, byte

31

sprite_group_size, integer[2][] variable

sprite_group, byte item_number, integer[]

variable

sprite_animations_negative_direction,

integer[] variable

sprite_animations_positive_direction)

Where:

ID is between 0 and MAXAUTOSGAMS-1 value

X is integer variable that holds horizontal sprite group

location

Y is integer variable that holds vertical sprite group location

minimum is the low range value of possible locations

maximum is the high range value of possible locations

delta is the step value for movement

directions defines horizontal (=0) or vertical (!=0)

direction

ticks is the number of interrupts between sprite group

movement and stepping through animations

sprite_group_size defines number of sprites in a

sprite group

sprite_group is an array describing a sprite group, for

details refer to SPRGRPMOV command

32

item_number defines number of animations to step

through

sprite_animations_negative_directions holds

animations for when sprite group is going backwards

sprite_animations_positive_directions holds

animations for when sprite group is going forward

Prerequisites:

• MAXAUTOSGAMS reserved memory for definition

• Animations prepared with ANIMSPRITE

Errors:

• Invalid type if incorrect type passed

• Subscript out of range if ID invalid

Example:

DIM AL%(2):AL%(0)=0:AL%(1)=1:AL%(2)=2

DIM AR%(2):AR%(0)=3:AR%(1)=4:AR%(3)=5

DIM SG%(2,1):SG% (0,0)=0:SG% (1,0)=0:SG%

(2,0)=0

SG% (0,1)=1:SG% (1,1)=0:SG% (2,1)=0

X%=0:Y%=0

33

_AUTOSGAMDEF(0,X%,Y%,0,100,1,0,1,2,SG%,3,

AL%,AR%)

Sample code:

• ANIMTEST.BAS

• GAME.BAS

AUTOSGAMSTART

Starts automatic sprite group movement and animation.

Format:

AUTOSGAMSTART (byte ID)

Where:

ID is between 0 and MAXAUTOSGAMS-1 value

Prerequisites:

• Animation definition prepared with AUTOSGAMDEF

Errors:

• Invalid type if incorrect type passed

• Subscript out of bounds if parameters outside of

allowed range

Example:

_AUTOSGAMSTART(1)

Sample code:

34

• ANIMTEST.BAS

• GAME.BAS

AUTOSGAMSTOP

Stops automatic sprite group movement and animation.

Format:

AUTOSGAMSTOP (byte ID)

Where:

ID is between 0 and MAXAUTOSGAMS-1 value

Prerequisites:

• Animation definition prepared with AUTOSGAMDEF

Errors:

• Invalid type if incorrect type passed

• Subscript out of bounds if parameters outside of

allowed range

Example:

_AUTOSGAMSTOP(1)

Sample code:

• ANIMTEST.BAS

• GAME.BAS

35

BLIT

Command implements software sprite functionality. It

applies monochrome object of defined size onto defined

memory background with 1 pixel precision. Object is defined

with mask and data. Mask will be ANDed with background

and then data will be ORed with background. All memory

locations can be in pages 0 and 1.

Format:

BLIT (integer x, integer y, integer

object_data_pointer, integer

object_mask_pointer, integer width,

integer height, integer

background_pointer, integer

background_width)

Where:

X is location in the background (>=0)

Y is location in the background (>=0)

object_data_pointer is a memory location where

object foreground is defined

object_mask_pointer is a memory location where

object mask is defined

width is object width in characters (8 pixels)

height is object height in characters (8 pixels)

36

background_pointer is a memory location where

background is located

background_width is background width in characters (8

pixels)

Prerequisites:

• None

Errors:

• Invalid type if incorrect type passed

Example:

_BLIT(55,31,&h7000,&h7800,12,5,&h100,32,2

4)

Sample code:

• DEMO2.BAS

• FONT2.BAS

• GAME.BAS

BOXMEMCPY

Copies window like data segment from one location into

another. Locations can be in pages 0 and 1.

37

Format:

BOXMEMCPY (integer P1, integer B3,

integer number_of_rows, integer B1,

integer P2, integer B2)

Where:

P1 is memory location where source data begins

B3 is number of bytes in a single row of source data

38

number_of_row is number of rows of source data

B1 is number of bytes of a source window row

P2 is memory location where to copy data

B2 is number of bytes of destination window row

Prerequisites:

• None

Errors:

• Invalid type if incorrect type passed

Example:

_BOXMEMCPY(&H1000,80,256,5,&H7000,80)

Sample code:

• DEMO2.BAS

BOXMEMVRM

Copies window like data segment from one location in RAM

into another in VRAM. Source location can be in pages 0 and

1. Command parameters are the same as for BOXMEMCPY.

B2 value should be 256 for SCREEN 2 mode.

Format:

39

BOXMEMVRM (integer P1, integer B3,

integer number_of_rows, integer B1,

integer P2, integer B2)

Where:

P1 is memory location where source data begins

B3 is number of bytes in a single row of source data

number_of_rows is number of rows of source data

B1 is number of bytes of a source window row

P2 is memory location where to copy data

B2 is number of bytes of destination window row

Prerequisites:

• None

Errors:

• Invalid type if incorrect type passed

Example:

_BOXMEMVRM(&H1000,80,256,5,BASE(12),256)

Sample code:

• DEMO2.BAS

40

COLL

Collision detection between one rectangular object and a list

of other rectangular objects.

Format:

COLL (integer variable result, integer x,

integer y, integer width, integer height,

integer list_size, integer[7][] objects)

Where:

result is an integer variable where the result is stored, -1 if

no collision, 0..list_size-1 if collision

X is horizontal location of upper left edge

Y is vertical location of upper left edge

width is the last column of an object, for a 16x16 sprite this

is 15

height is the last row of an object, for a 16x16 sprite this is

15

list_size is the number of objects to check collision

agains and stored in objects variable

objects is a two dimensional array that describes

collidable objects. These can either be static or sprites. For of

a single array element is:

(0,n) – active flag, if 0 collision will not be checked

41

(1,n) – is horizontal location of upper left edge OR sprite ID

depending on (7,n)

(2,n) – is horizontal location of upper left edge OR not used

depending on (7,n)

(3,n) – horizontal offset where actual object begins, for

example if a sprite pattern does not actually begin at (0,0)

(4,n) – vertical offset where actual object begins, for example

if a sprite pattern does not actually begin at (0,0)

(5,n) – width or the last column of the object

(6,n) – height or the last row of the object

(7,n) – type, 0=generic, <>0 sprite

Prerequisites:

• None

Errors:

• Invalid type if incorrect type passed

• Subscript out of bounds if parameters outside of

allowed range

Example:

(X% and Y% already defined)

R%=0:DIM O%(7,1)

42

O%(0,0)=1:O%(1,0)=100:O%(2,0)=80:O%(3,0)=

0:O%(4,0)=0:O%(5,0)=9:O%(6,0)=9:O%(7,0)=0

O%(0,1)=1:O%(1,1)=31:O%(3,1)=4:O%(4,1)=4:

O%(5,1)=5:O%(6,1)=5:O%(7,1)=1

_COLL(R%,X%,Y%,15,15,2,o%)

Sample code:

• COLLTEST.BAS

• GAME.BAS

DLOAD

Loads a file from disk, with possibility to skip data at the

beginning and to write data to upper 32k of RAM. Makes a

raw read ignoring BLOAD header.

Format:

DLOAD (string filename, integer skip,

integer destination, integer size)

Where:

filename is file name on disk in 8+3 format. Allowed

formats are:

• FILENAME.EXT

• D:FILENAME.EXT

• FILENAME

• D:FILENAME

43

Note that when using DEFUSR form another parameter

needs to be passed to identify the string type used. For MSX-

BASIC set it to 0 and for X-BASIC non zero. MSX-BASIC

string type consists of size byte followed by a pointer to

ASCII data. X-BASIC string type consists of a size byte

followed by actual ASCII data. Check DEMO2USR basic

program for example.

skip designates the number of bytes to skip at the

beginning of the file before starting to read. This is mostly

used to skip BLOAD header with a value of 7.

destination is the destination in memory where to store

data

size is the number of bytes to read

Prerequisites:

• None

Example:

_DLOAD(“FOREST.BIN”,7,&H100,6293)

Sample code:

• UNPACK.BAS

• DEMO2USR.BAS

44

FILRAM

Fills memory block with a specified value. Can be used for

pages 0 and 1.

Format:

FILRAM (integer address, integer count,

byte value)

Where:

address is the starting memory block location

count is the number of bytes to write

value is the number to fill the block with

Prerequisites:

• None

Errors:

• Invalid type if incorrect type passed

Example:

_FILRAM (&h1000,1024,0)

Sample code:

• None

45

FILVRM

Fills video memory block with a specified value.

Format:

FILVRM (integer address, integer count,

byte value)

Where:

address is the starting video memory block location

count is the number of bytes to write

value is the number to fill the block with

Prerequisites:

• None

Errors:

• Invalid type if incorrect type passed

Example:

_FILVRM (BASE(12),6144,0)

Sample code:

• BLIT.BAS

• FONT2.BAS

46

GENCAL

Generic assembly call. Allows specifying registers AF, BC,

DE, HL, IX and IY before calling specified address. Resulting

register values are store back in the input array. Routine

does not put RAM in pages 0 and 1 so one can call BIOS

routines.

Format:

GENCAL (integer address, integer[5]

registers)

Where:

address is the location of the routine to call

registers in an array holding input and output register

values. Order of registers in the array is: AF, BC, DE, HL, IX ,

IY

Prerequisites:

• None

Errors:

• Invalid type if incorrect type passed

• Subscript out of bounds if register array too short

Example:

REM COPY MSX FONT TO VRAM IN SCREEN 2

47

DIM R%(5)

R%(1)=2048:R%(2)=256*PEEK(5)+PEEK(4):R%(3

)=BASE(12)

_GENCAL(&H5C,R%)

Sample code:

• COLLTEST.BAS

MAXANIMDEFS

Allocates or deallocates memory for animation definitions.

Each definition consumes 16 bytes.

Format:

MAXANIMDEFS (integer number)

Where:

number is the maximum number of animation definitions.

Prerequisites:

• None

Errors:

• Invalid type if incorrect type passed

Example:

_MAXANIMDEFS(5)

48

Sample code:

• ANIMTEST.BAS

• GAME.BAS

MAXANIMITEMS

Allocates or deallocates memory for animation items.

Each definition consumes 5 bytes.

Format:

MAXANIMITEMS (integer number)

Where:

number is the maximum number of animation items.

Prerequisites:

• None

Errors:

• Invalid type if incorrect type passed

Example:

_MAXANIMITEMS(5)

Sample code:

• ANIMTEST.BAS

• GAME.BAS

49

MAXANIMSPRS

Allocates or deallocates memory for sprite or character

animations.

Each definition consumes 8 bytes.

Format:

MAXANIMSPRS (integer number)

Where:

number is the maximum number of sprite or character

animations.

Prerequisites:

• None

Errors:

• Invalid type if incorrect type passed

Example:

_MAXANIMSPRS(5)

Sample code:

• ANIMTEST.BAS

• GAME.BAS

50

MAXAUTOSGAMS

Allocates or deallocates memory for automatic sprite group

animation and movement definitions.

Each definition consumes 24 bytes.

Format:

MAXAUTOSGAMS (integer number)

Where:

number is the maximum number of automatic sprite group

animation and movement definitions.

Prerequisites:

• None

Errors:

• Invalid type if incorrect type passed

Example:

_MAXAUTOSGAMS(5)

Sample code:

• ANIMTEST.BAS

• GAME.BAS

51

MEMCPY

Copies a memory block from source to destination address.

Can be used for pages 0 and 1.

Format:

MEMCPY (integer source, integer

destination, integer count)

Where:

source is the memory block location start location

destination is the address where to copy

count is the number to bytes to copy

Prerequisites:

• None

Errors:

• Invalid type if incorrect type passed

Example:

REM GET FREE MEMORY START ADDR IN PAGE 1

MB%=0

_MEMCPY (&H4010, VARPTR(MB%), 2)

Sample code:

52

• DEMO2.BAS

• GAME.BAS

MEMVRM

Copies a memory block from source address in RAM to

destination address in VRAM. Can be used for pages 0 and 1.

Format:

MEMVRM (integer source, integer

destination, integer count, byte flag)

Where:

source is the memory block location start location in RAM

destination is the address where to copy in VRAM

count is the number to bytes to copy

flag to wait for vblank to copy data (0=no, >0 yes). If yes,

then assembler command HALT is issued before data copy.

Also, if bit 2 is set, and sprite system is active, it will set sprite

update flag before HALT command.

Prerequisites:

• None

Errors:

• Invalid type if incorrect type passed

53

Example:

_MEMVRM (&H100, BASE(12), 6144,0)

Sample code:

• DEMO2.BAS

• GAME.BAS

• FONT2.BAS

SGAM

Sprite group animation and movement based on a

description of a sprite group and animations.

Format:

SGAM (integer x, integer y, byte

sprite_group_size, integer[2][] variable

sprite_group, byte item_number, integer[]

variable sprite_animations)

Where:

X is horizontal sprite group location

Y is vertical sprite group location

sprite_group_size defines number of sprites in a

sprite group

sprite_group is an array describing a sprite group, for

details refer to SPRGRPMOV command

54

item_number defines number of animations to step

through

sprite_animations holds animation definitions for

each sprite of a group

Prerequisites:

• Animations prepared with ANIMSPRITE

Errors:

• Invalid type if incorrect type passed

• Subscript out of range if ID invalid

Example:

DIM AL%(2):AL%(0)=0:AL%(1)=1:AL%(2)=2

DIM

SG%(2,1):SG%(0,0)=0:SG%(1,0)=0:SG%(2,0)=0

SG%(0,1)=1:SG%(1,1)=0:SG%(2,1)=0

_SGAM(50,60,2,SG%,3,AL%)

Sample code:

• ANIMTEST.BAS

• GAME.BAS

SNDPLYINI

Initializes the sound player with music and optional sound

effects data.

55

Format:

SNDPLYINI (integer music_data, integer

sfx_data)

Where:

music_data is a memory location where music for AKG

player is located

sfx_data is a memory location where sound effects for

AKG player are located, if -1 no sound effects

Prerequisites:

• None

Errors:

• Invalid type if incorrect type passed

Example:

_SNDPLYINI (&H100, &H1000)

Sample code:

• GAME.BAS

SNDPLYOFF

Disables sound player and stops any running sounds.

Format:

56

SNDPLYOFF

Prerequisites:

• None

Errors:

• None

Example:

_SNDPLYOFF

Sample code:

• GAME.BAS

SNDPLYON

Starts the music player and disables key click.

Format:

SNDPLYON

Prerequisites:

• Player initialized with SNDPLYINI

Errors:

• Out of data if SNDPLYINI not called

Example:

57

_SNDPLYON

Sample code:

• GAME.BAS

SNDSFX

Plays sound effect on a specified channel.

Format:

SNDSFX (byte sfx_number, byte channel,

byte volume)

Where:

sfx_number is the ID of the sound effect (>0)

channel is the channel number on which to play the effect

(0, 1 or 2)

volume is the inverted volume scale (0-16), where 0 is full

volume and 16 is silent

Prerequisites:

• Player initialized with SNDPLYINI and sound effects

Errors:

• Out of data if SNDPLYINI not called with sound

effect data specified

• Illegal function call if SNDPLYINI not called at all

58

Example:

_SNDSFX (5,0,0)

Sample code:

• GAME.BAS

SPRDISABLE

Disables sprites system.

Format:

SPRDISABLE

Prerequisites:

• None

Errors:

• None

Example:

_SPRDISABLE

Sample code:

• GAME.BAS

• SPRITES.BAS

• ANIMTEST.BAS

59

SPRENABLE

Initializes the sprite system.

Format:

SPRENABLE (integer[3][] variable

sprite_attributes, integer variable

sprite_update, byte flicker, byte

num_sprites_handled)

Where:

sprite_attributes is an array describing sprite

attributes in the form:

 (0,n) – y coordinate

 (1,n) – x coordinate

 (2,n) – pattern

 (3,n) - color

sprite_update is a variable to trigger VRAM update

from sprite_attributes, when set to <>0 an update will occur,

and value set to 0. The use of animations will updates this

flag to 1 as needed too.

flicker <>0 will cause that sprite attributes are not

applied to VRAM in the same order as in sprite_attributes

but cyclically effectively alleviating 4 sprites per line

limitation.

60

num_sprites_handled sets how many sprites are

updated in each cycle. Use this for performance reasons if

you do not work with full 32 sprites. Valid range is 0 <=

num_sprites_handled <= 32.

Prerequisites:

• None

Errors:

• Invalid type if incorrect type passed

• Subscript out of range if incorrectly sized array

provided

Example:

DIM SA%(3,31):SU%=0

_SPRENABLE (SA%, SU%, 1, 32)

Sample code:

• GAME.BAS

• SPRITES.BAS

• ANIMTEST.BAS

SPRGRPMOV

Command moves a group of sprites at the same time.

Format:

61

SPRGRPMOV (integer x, integer y, byte

sprite_group_size, integer[2][] variable

sprite_group)

Where:

X is horizontal sprite group location

Y is vertical sprite group location

sprite_group_size defines number of sprites in a

sprite group

sprite_group is an array describing a sprite group.

 (0,n) – sprite number

 (1,n) – Y

 (2,n) – X

Prerequisites:

• Sprite system enabled

Errors:

• Invalid type if incorrect type passed

• Subscript out of range if array too small

• Illegal function call if sprite system disabled

Example:

DIM

SG%(2,1):SG%(0,0)=0:SG%(1,0)=0:SG%(2,0)=0

62

SG%(0,1)=1:SG%(1,1)=0:SG%(2,1)=0

_SPRGRPMOV(50,60,2,SG%)

Sample code:

• ANIMTEST.BAS

• GAME.BAS

• SPRITES.BAS

TILERAM

Copies rectangular shape (tile) several times to destination

location in RAM in a tiled fashion.

Format:

63

TILERAM (integer TA, integer

tile_columns, integer tile_rows, integer

DA, integer dest_columns, integer

dest_rows, integer x, integer y, integer

num_tiles_horizontally, integer

num_tiles_vertically)

Where:

TA is memory location where tile data begins

tile_columns is the number of 8x8 pixel columns in a tile

tile_rows is the number of 8x8 pixel rows in a tile

DA is memory location where destination window begins

dest_columns is the number of 8x8 pixel columns in

destination

dest_rows is the number of 8x8 pixel rows in destination

X is column in destination where to start applying tiles

Y is row in destination where to start applying tiles

tiles_horizontally is the number of tiles to apply in

horizontal direction

tiles_vertically is the number of tiles to apply in

vertical direction

Prerequisites:

64

• None

Errors:

• Invalid type if incorrect type passed

Example:

_TILERAM (&HB000, 1, 1, &H100, 32, 24,

0, 0, 32,24)

Sample code:

• DEMO2.BAS

• FONT2.BAS

TILEVRM

Copies rectangular shape (tile) several times to destination

location in VRAM in a tiled fashion. Function is used

exclusively in SCREEN 2.

Format:

TILEVRM (integer TA, integer

tile_columns, integer tile_rows, integer

x, integer y, integer

num_tiles_horizontally, integer

num_tiles_vertically)

Where:

TA is memory location where tile data begins

tile_columns is the number of 8x8 pixel columns in a tile

65

tile_rows is the number of 8x8 pixel rows in a tile

X is column in destination where to start applying tiles

Y is row in destination where to start applying tiles

tiles_horizontally is the number of tiles to apply in

horizontal direction

tiles_vertically is the number of tiles to apply in

vertical direction

Prerequisites:

• None

Errors:

• Invalid type if incorrect type passed

Example:

_TILEVRM(&HB000,1,1,0,0,32,24)

Sample code:

• DEMO2.BAS

UNPACK

Decompresses data in ZX0 format.

Format:

66

UNPACK (integer source, integer

destination)

Where:

source is the memory block start location in RAM

destination is the address where to decompress in RAM

Prerequisites:

• None

Errors:

• Invalid type if incorrect type passed

Example:

_UNPACK (&HA000, &H100)

Sample code:

• UNPACK.BAS

VRMMEM

Copies a memory block from source address in VRAM to

destination address in RAM. Can be used for pages 0 and 1.

Format:

67

VRMMEM (integer source, integer

destination, integer count)

Where:

source is the memory block start location in VRAM

destination is the address where to copy in RAM

count is the number to bytes to copy

Prerequisites:

• None

Errors:

• Invalid type if incorrect type passed

Example:

_VRMMEM (BASE(12), &H100, 6144)

Sample code:

None

VUNPACK

Decompresses data in ZX0 format directly to VRAM.

Format:

VUNPACK (integer source, integer

destination)

68

Where:

source is the memory block start location in RAM

destination is the address where to decompress in

VRAM

Prerequisites:

• None

Errors:

• Invalid type if incorrect type passed

Example:

_VUNPACK (&H100, 0)

Sample code:

• UNPACK.BAS

69

INFORMATIONAL DATA

Following memory locations contain useful data about

ARTISAN basic extension

• &H4010 – free memory location start address in

memory page 1. This is also returned by ARTINFO

command

• &H4012 – ARTISAN basic version in DAA format

ab.cd. This is also returned by ARTINFO command

o &H4012 = aaaabbbb

o &H4013 = ccccdddd

ARTISAN basic extension can be compiled with certain parts

included or excluded. ARTINFO will return flags used during

compilation. Meaning of flags is given below:

Bit 0 – sound related commands: SNDPLYINI, SNDPLYON,

SNDPLYOFF and SNDSFX

Bit 1 – main memory related commands: MEMCPY and

FILRAM

Bit 2 – video memory related commands: FILVRM,

MEMVRM and VRMMEM

Bit 3 – bitmap operations: BLIT

Bit 4 – sprites related commands: SPRENABLE,

SPRDISABLE and SPRGRPMOV

Bit 5 – generic assembly call: GENCAL

Bit 6 – tiling commands: TILERAM and TILEVRM

Bit 7 – box commands: BOXMEMCPY and BOXMEMVRM

Bit 8 – animation commands: MAXANIMITEMS,

ANIMITEMPAT, ANIMITEMPTR, MAXANIMDEFS,

ANIMDEF, MAXANIMSPRS, ANIMSPRITE, ANIMCHAR,

70

MAXAUTOSGAMS, AUTOSGAMDEF, AUTOSGAMSTART,

AUTOSGAMSTOP, ANIMSTEP, ANIMSTART, ANIMSTOP

and SGAM

Bit 9 – collision detection: COLL

Bit 10 – signifies if basic extension commands are available

through CALL or _ syntax (ARTINFO is always available)

Bit 11 – signifies if functionality is available through DEFUSR

Sample code can be found in AUTOEXEC.BAS file

71

APPENDIX A – HOW TO ACCESS FUNCTIONS VIA

DEFUSR COMMAND

When extension is compiled with access through DEFUSR

(compile flags bit 11 = 1) one should prepare an integer array

holding function ID followed by parameters, prepare a

machine language call to extension, and pass an address of

the parameters array in the DEFUSR call.

The assembly code of a routine to access ARTISAN

extension from basic is like this:

RST #30

DB <SLOT ID>

DW #4014

EI

RET

Where SLOT ID is the value from RAMAD1 (#F342) location

and #4014 is the entry point in ARTISAN basic.

In plain basic, one can use an array to hold this routine since

it is fully relocatable.

REM JUMP ROUTINE

DIM JR%(2)

REM RST #30, SLOT ID

72

JR%(0)=&HF7:POKE

VARPTR(JR%(0))+1,PEEK(&HF342)

REM ADDRESS

JR%(1)=&H4014

REM EI, RET

JR%(2)=&HC9FB

REM DEFUSR DEFINITION

DEFUSR=VARPTR(JR%(0))

Note that DEFUSR needs to be run each time, before a call, if

definition of JR array is not the last variable defined, since

interpreter keeps changing memory locations of variables

upon definition or removal.

To make an actual call, for example SPRENABLE, do the

following:

REM PARAMETERS ARRAY

DIM ZZ%(4)

ZZ%(0)=0

ZZ%(1)=VARPTR(SA%(0,0))

ZZ%(2)=VARPTR(SU%)

ZZ%(3)=1

ZZ%(4)=32

73

DEFUSR=VARPTR(JR%(0))

O%=USR(VARPTR(ZZ%(0)))

Parameters are in the same order as if the commands are

used. Any exceptions are noted in the command

descriptions.

Output value from DEFUSR command indicates success if

zero value returned.

Following table holds a list of function IDs.

Function ID Function

0 SPRENABLE

1 SPRDISABLE

2 MEMCPY

3 MEMVRM

4 BLIT

5 SGAM

6 SPRGRPMOV

7 COLL

8 SNDSFX

9 ANIMSTEP (single item)

10 ANIMSTEP (multiple items)

11 ANIMSTART (single item)

12 ANIMSTART (multiple items)

74

13 ANIMSTOP (single item)

14 ANIMSTOP (multiple items)

15 BOXMEMCPY

16 BOXMEMVRM

17 MAXANIMITEMS

18 MAXANIMDEFS

19 MAXANIMSPRS

20 MAXAUTOSGAMS

21 ANIMITEMPAT

22 ANIMITEMPTR

23 ANIMDEF

24 ANIMSPRITE

25 ANIMCHAR

26 AUTOSGAMDEF

27 AUTOSGAMSTART

28 AUTOSGAMSTOP

29 GENCAL

30 FILRAM

31 SNDPLYINI

32 SNDPLYON

33 SNDPLYOFF

34 TILERAM

75

35 TILEVRM

36 FILVRM

37 VRMMEM

38 UNPACK

39 VUNPACK

40 DLOAD

Sample code can be found in:

• DEMO2USR.ASC

• GAMEUSR.ASC

76

APPENDIX B – HOW TO SAFELY LOAD EXTENSION

ARTISAN basic extension should be loaded only once via

BLOAD command. Doing it multiple times will lead to

unexpected results. The safe way to load can be via ON

ERROR and ARTINFO commands.

10 REM ARTISAN BASIC LOADER

20 REM CHECK IF ALREADY LOADED

30 F%=0:V%=0:M%=0

40 ON ERROR GOTO 70

50 _ARTINFO(V%,F%,M%)

60 GOTO 100

70 RESUME 80:ON ERROR GOTO 0

80 BLOAD "ARTISANE.bin",R or BLOAD

"ARTISAND.bin",R

90 _ARTINFO(V%,F%,M%)

100 PRINT "ARTISAN BASIC available"

Sample code can be found in AUTOEXEC.BAS file

