

NNT mees

Lod
PERSONAL COMPUTER
DPC-200

INIDIEX

1. System installation
Unpacking
Ports and Sockets
Power cable connection
Power on
System installation
How to connect with your TV
How to connect with Data Recorder
How to connect with Joystick

2. Key board
© Key board layout
© Control keys
© Editing keys
© Function keys
@ Graphic keys layout
© Code keys layout

3. Editing
© Screen editor
@ Insert mode
© Delete mode
©® Copy mode

4. Numbers and variable
Constants
Numeric constants
Variables
Array Variables
Type conversion
Expressions and operators
Arithmetic operators
Interger division and modulus arithmetic
Overflow and division by zero
Relational operators
Logical operators
Functional operators
String operators

5. Graphics
Screen O mode
Screen 1 mode
Screen 2 mode
Screen 3 mode
Color
Border, Background and Foreground
color
Circle
Paint
Line and box drawing
Sprites

6. Sound
Play
“O”’ (Octave)
“T” (Tempo)
“L”" (Length)
“S”’ (Shape)
‘M”’ (Tone)
“R” (Rest)
‘VV’ (Volume)
Using a channels of sound
Tone generator control
Amplitude control
Mixer control
Register 7
Envelope Period control register
Shape register
PSG block diagram

7. MSX-basic

8. Sample programs

Appendices
© Appendix A :

@® AppendixB :

© Appendix C :

© Appendix D :

: I/O map
: Pinouts for

© Appendix E
@® Appendix F

© Appendix G :

© Appendix H :

@® Appendix |

© Appendix J

Control code table
Character code table
Slot arrangement
Memory map

Input/output devices
Error messages and
error codes
MSX-Basic reserved
words

: Mathematical
functions

: Trouble shooting
chart

Svstem Installation

Unpacking
The computer, video and sound cable, RF cable and data recorder cable are packed
in a foam cushioned carton.
Please save all packaging materials in case you must ship the unit for
maintenance of repairs.

Ports and Sockets

RF jack Video jack Sound jack

Expansion bus Printer port A

Expansion bus : Connects the external bus to the computer.
Printer port : Connects the printerto the computer.
Video jack : This port connects your T.V. or monitor to the computer.
Sound jack ‚ This port connects your T.V.or monitor to the computer.
RF jack : This port is connected to antenna jack of your T.V.

General General |

Purpose Purpose Data Recorder Jack
I/O port 2 V/O port 1a

Data recorder jack ‚ Connects the computer to the cassette recorder.
General purpose I/O Port : These ports connect optional joystick, graphic tablet

or paddle to the computer.

Power cable connection
Before connecting the power, please check and be sure the power switch on the
left side of the units is off.
Connect the power cable to wall outlet.

Power on
After you have connected the computer to power first turn on your T.V. or monitor
then turn the computer power switch to the “ON” position.

Power Switch: Turns on the power to the Computer.

The power on indicator on the keyboard panel will light up. You should see the
message displayed on the screen.

MSX System
Version 1.0

Copyright 1983 by Microsoft.

After a few second, you should see the next message displayed on the screen

MSX BASIC Version 1.0
Copyright 1983 by Microsoft.
28815 Bytes free
OK

Now you can start your work with the computer. If the system still does not start up
properly refer to the trouble shooting chart.
(Appendix J)

10

System Installation
To connect the system, you will need 220V electrical outlets for your computer and
monitor, or T.V. set.
Choose a comportable position for operation, away from any source of extreme
heat (sunlight, heater, etc).
The computeris designed to provide reasonable protection against such inter-
ferencein a residential installation. However, thereis no guarantee that interfer-
ence will not occur in a particular installation. If this equipment does cause
interference to radio or television reception, which can be determined by turning
equipment off and on, the user is encouraged to try to correct the interference by
one or more of the following measures:
B Reorient the receiving antenna
B Relocate the computer with respect to the receiver
B Move the computer away from the receiver
B Plug the computer into a different outlet so that computer and receiver are on

different branch circuits

If necessary, the user should consult the dealer or an experienced radio/T.V.
technician for additional suggestions

How to connect your T.V.

O. Connect one end of the video cable to the RF modulator

O. Connect the other end of the video cable to the T.V set

11

How to connect with Data Recorder.
O. Attach one end of the data recorder cable to the 8 pin DIN jackat the side panel

of the computer.
O. The other end consists of three cables.

In case,
Black cable connects to the REM input of the data recorder.
White cable connects to the EAR output of the data recorder.
Red cable connects to the MIC input of the data recorder.

F

|

Computer
Black (REM)
White (EAR)
Red (MIC)

How to connect with Joystick

Joystick cable connects directly
|

tothe 9 pin Jack at the side panel|of the computer.

12

System Installation
To connectthe system, you will need 220V electrical outlets for your computer and
monitor, or T.V. set.
Choose a comportable position for operation, away from any source of extreme
heat(sunlight, heater, etc).
The computeris designed to provide reasonable protection against such inter-
ferencein a residential installation. However, there is no guarantee that interfer-
ence will not occur in a particular installation. If this equipment does cause
interference to radio or television reception, which can be determined by turning
equipment off and on, the user is encouraged to try to correct the interference by
one or more of the following measures:
B Reorient the receiving antenna
B Relocate the computer with respect to the receiver
B Move the computer away from the receiver
B Plug the computer into a different outlet so that computer and receiver are on

different branch circuits

If necessary, the user should consult the dealer or an experienced radio/T.V.
technician for additional suggestions.

How to connect your T.V.

O. Connect one end of the video cable to the RF modulator.

O. Connect the other end of the video cable to the T.V set

11

How to connect with Data Recorder.
O. Attach one end of the data recorder cable to the 8 pin DIN jack at the side panel

of the computer.
O. The other end consists of three cables.

In case,
Black cable connects to the REM input of the data recorder.
White cable connects to the EAR output of the data recorder.
Red cable connects to the MIC input of the data recorder.

® Black (REM)
White (EAR)CCP fed (MC)

|

Computer ER

|

L

How to connect with Joystick
[

Joystick cable connects directly |

to the 9 pin Jack at the side panel
of the computer.

12

KEY BOARD

Programming is generally done by sending instructions to the computer through
the keyboard. Your instructions and the computer's responses are visible on a TV
screen, which is connected to the computer.

The computer’s keyboard should look somewhat familiar to you becauseit resem-
bles that of a typewriter. However, the keyboard contains additional keys that are
necessary to effectively communicate with the computer.

Keyboard Layout

Ed IN ENIENLILENLINLIIEIILEILIICNIENILNes
ma [oee e IN NL IEI IL ILIILIIL| en
CTRL 4 5 0 F G H J K L

&

er[IT2 Tee TN TT ee ITI 2 2IT2IIsee

un

The keyboard of your computer consists of alphabetic keys, numeric keys, special
character keys and special function keys.

15

Control Keys

STOP

CTRL

RETURN

SELECT

ESC

Pressing this key will pause the program execution.
Pressing this key again will resume the execution.

The CONTROLKey. Pressing this key and a character key simultane-
ously tells the computer to work a special function.
(See Appendix B)
Pressing this key and STOP key simultaneously will terminates the
program execution and return to control back over to you.

Press this key at the end of each instruction you type.
By pressing this key you are telling the computer to enterthe instruction
youjust typed into its memory.
Note: RETURN/indicates you to press “RETURN” key.
This key has no function in BASIC programming and are only accessed
from programs. Pressing this key will generate the control code 24.

This key has no function in BASIC programming and is only accessed
from programs. Pressing this key will generate the control code 27

16

Editing Keys

INS

DEL

BS

TAB

HOME

CAPS

wereSHIFT

GRAPH

CODE

This key is used when you wish to insert characters within a line.
The key acts like a toggle switch for insert mode. When insert mode is
on, thesize of the cursoris reduced and characters are inserted at the
current cursor position. Characters to the right of the cursor move right
as new onesare inserted. Line wrap is observed. When insert mode is
off, the size of the cursor returns to the normal size.
This key is used when you wish to delete character at current cursor
position. All characters to the right of the cursor are moved left one
position. Line wrap is observed.

BACK SPACE. Deletes the characterto the left of the cursor.
All charactersto the right of the cursor are moved left one position. Line
wrap is observed.

This key moves the cursor to the next tab stop overwriting blanks.
Tab stop occur every 8 characters.
Movesthe cursor to the upper left corner (home position) of the screen.
When this key and shift key are pressed simultaneously it moves the
cursor to the home position and clears the entire screen.

Pressing this key will toggle the display alphabetic characters from lower
case to upper case or upper case to lower case.

In typing the alphabetic characters, this key acts like a CAPS key.
Pressing this key and the numeric key or special character key will
display upper printed symbol on the key-top

Pressing this key and the character key simultanously will display the
Graphic symbol.
The detailed figure of each key will be covered in later section.
Pressing this key and the character key simultaneously will display the
special character symbols.
The detailed figure of each key will be covered in later section.

DEAD key. Pressing this key and a vowel simultaneously, will be
displayed a special character.

CURSOR CONTROL KEY

The cursor control keys (up, down, left and right) control the movement of the
cursor.
By pressing a combination of the up and left arrow keys, you will cause the cursor to
move towards the upper left corner of the display screen.

Other combinations will work in the same fashion giving you 8 directions of cursor
movement using these keys.

17

Function Keys

The keysis located at the top row of keys on the keyboard, and each oneis marked
with the letter "F”. Theyare a labor-saving devices because they allow you to instruct
the computerto perform a frequently used function by pressing only one key instead
of having to type many keys.

Hereis a list of each key, the function it performs and a brief description of the
function.

Function keys through [F5] are operated by pressing the appropriate key.
Function keys hrough [E10] are operated by pressing the [SHIFT]key and holding
it down while simultaneously pressing the appropriate key.

Hereis the function keys meaning

#1 color The color command is used to change the text, back-
ground and border colors on screen.
The auto command is used to make the computer
generate program line numbers automatically. This
command is used very often, since all programming
statements must be preceded by line numbers.

F2 auto

F3 goto goto is a command which provides you with the ability
to execute your program from any place (line number)
you desire.

F4 list This command instructs your computer to print all your
immediately preceding program statements on the
screen.

F5 run+treturn run tells the computer to take the program you have
written and perform the commands you have indicated

Fe] color 15,44 This tells the computer to print white letters on a blue
+return background with a light blue border.

These colors are the colors of the screen when you turn
the computer on.

F7 cload”’ cload”’ instructs the computer to input (load) data
from a cassette recorder (which can be easily con-
nected to your computer)

18

F8|conttreturn This command is used totell the computerto continue”
program execution after the last executed line.

F9 rar With this LIST. (with a period next to it) only the last line
you were working on (whether programming, editing,
etc.) will be displayed on the screen.

F10 KE This command is similar to the standard RUN command.
However this command also clears the screen beforeit
“runs” your program.

The computer will normally display the function of keys[F1] through [FS] and
whenever you press the shift keyit displays the function of keys[F6]through[F1O]

Any of these pre-defined functions can be quickly changed for your own conven-
ience to a function that you frequently use. See the MSX Basic Command KEY" for
further details.

19

Graphic Keys Layout

î NpXK

Graphic + Shift Keys Layout

o Ens Es ==
oreJE@ Nee Je JJ JIEJNJLJN2 ®

se [JINN @ ol 2INJN > A+ SHIFT

20

Code Keys Layout

Code + Shift Keys Layout

esci|| + ellerJNJI CIS 4

= IL]
CTRL Ä Sox ï
== LIE

ooos|||e

SHIFT

WW

21

EDITING

The MSX-BASIC Screen Editor lets you change a line any where on
the screen. You can change only one line at a time. The Screen Edi-
tor can be used after an OK prompt appears and before a RUN
command is issued. By using the cursor control keys and the edit-
ing keys, you can move quickly around the screen, making correc-
tions where necessary.

L

“SCREEN EDITOR”
==

Here is an example to show you how to use the screen editor. A more
detailed description of the Screen Editor's syntax can be found in the MSX-
Basic COMMAND.

Let's enter the following program.

10 PRINT “MERIO” [RETURN

20 PRINT “MARIA” [RETURN

ZOEND RETURN

Remember that a program line must always begin with a line number.
If you make a mistake, just press RETURN and retypethe line.

After you have finished, press the CLS/HOME key then type LIST or F4 and
press RETURN you should see

LIST

10 PRINT "MERIO”
10 PRINT "MARIA"
30 END
OK

25

Now let's correct the ward MARIO in line 10. First use the cursor Key's up
direction key to move to line 10 and then the RIGHT direction key to move the
cursor to the top of the letter “E” of "MERIO”

Press the letter “A"’ to change the word to MARIO”, then press RETURN. The
line will be stored now as:

10 PRINT “MARIO”

You havejust replaced the character ’E” with the character A" To verify this,
press CLS/HOME, F4 (list), RETURN. You should see:

LIST

10 PRINT “MARIO”
20 PRINT "MARIA"
30 END
OK

The next stepis to insert the two words SHE IS into line 10. We do this by moving
the cursor with the cursor control to M"’ of MARIO” in line 10.

26

“INSERT” mode

Now press the INS, key and the cursor will become half as tall as before. This
means you are in the “INSERT” mode. Type SHEIS and press RETURN.

You have just inserted the words “SHE IS”. Follow the steps you used to verify
line 10 and you will see:
LIST

10 PRINT “SHE IS MARIO”
20 PRINT "MARIA"
30 END
OK

Besides using the Screen Editor, you can also change a line by entering a new
one with the same line number. BASIC will automatically replace that line

“DELETE” mode

The next stepis to delete the one character S in line 10.
We do this by moving the CURSORto ’S” of “SHE” in line 10.
Now press the DEL key and press “RETURN”
You have just DELETE the character S” of “SHE” in line 10.
Follow the steps you used to verify line 10 and you will see.

10 PRINT HE IS MARIO”
20 PRINT “MARIA”
30 END
OK

27

"COPY" mode 1]

Type new, RETURN. Now all you have done is cleared.
Let's enter the following line.

10 PRINT “HE IS MARIO" RETURN.
Then move the cursor to up direction 1" of 10" in line 10.
Press the letter “2” and RETURN to change the line number 10 to 20.

You havejust duplicated the line 10 to make line 20.
To verify this, press CLS/HOME, F4 (list), RETURN. You will see:

LIST

10 PRINT “HE IS MARIO”
20 PRINT “HE IS MARIO”
OK

Now it is your turn to change the sentence HE IS MARIO” to “SHE IS MARIA” in
line 20. Try to do this with your MSX SCREEN EDITOR.

28

N ERS AND
VARIABILE

MSX BASIC is featured with up to 14 digits accuracy double precision
BCD arithmetic function. This means arithmetic operations no more
generate strange round errors that confuse novice users.
Every trancendental functions are also calculated with this accuracy.
16 bit signed integer operation is also available for faster execution.

| Constants

Constants are the values MSX-BASIC uses during execution. There are types of
constants: string and numeric.

A string constant is a sequence of up to 255 alphanumeric characters enclosed
in double quotation marks.

Exampless:
“HELLO”
$25,000.00"
“Number of Employees”

Numeric constants are positive or negative numbers. MSX-BASIC numeric
constants cannot contain commas. There aresix types of numeric constants:

1. Integer constants Whole numbers between -32768 and 32767. Integer
constants do not contain decimal points.

2. Fixed-point Positive or negative real numbers, i.e., numbers that
Constants contain decimal points.

3. Floating-point Positive or negative numbers represented in exponential
Constants form (similar to scientific notation). A floating-point con-

stant consists of an optionally signed integeror fixed-
point number (the mantissa) followed by the letter E and
an optionally signed integer (the exponent). The allowa-
ble range for floating-point constants is 10-64 (105%) to
10+63 (1083)

Examples:
235.988E-7 = .0000235988
2359E6 = 2359000000
(Double precision floating-point constants are denoted by
the letter D instead of E.)

31

4. Hex constants

5. Octal constants

6. Binary constants

Hexadecimal numbers, denoted by the prefix &H.

Examples:
&H76
&H32F
Octal numbers, denoted by the prefix &O.

Examples:
80347
Binary numbers, denoted by the prefix &B.

Examples:
&BO01110110
&B11100111

32

 Numeric Constants

Numeric constants may be either single precision or double precision numbers.
Single precision numeric constants are stored with 6 digits of precision, and
printed with up to 6 digits of precision. Double precision numeric constants are
stored with 14 digits of precision and printed with up to 14 digits. Double precision
is the default for constant in MSX-BASIC.

A single precision constant is any numeric constant that has one of the follow-
ing characteristics:

1. Exponential form using E.

2. Attrailing exclamation point (!).
Examples:

-1.09E-06
22.5!

A double precision constant is any numeric constant that has one of these
characteristics:

1. Any digits of number without any exponential or type specifier.
2. Exponential form using D.

3. A trailing number sign (#).
Examples:

3489
345692811
-1.09432D-90
3489.04
7654321.1234

33

Variables

Variables are names used to represent values used in a BASIC program. The
value of a variable may be assigned explicitly by the programmer, or it may be
assigned as the result of calculations in the program. Before a variable is assigned
a value, its value is assumed to be zero.

MSX-BASIC variable names may be any length. Up to 2 characters are signifi-
cant. Variable names can contain letters and numbers. However, the first char-
acter must be a letter. Special type declaration characters are also allowed.

A variable name may not be a reserved word and may not contain embedded
reserved words. Reserved words include all MSX-BASIC commands, statements,
function names, and operator names. If a variable begins with FN, it is assumed to
be a call to a user-defined function

Examples:
3X, wrong : The first characteris a number.
B/3, wrong : The special character '/”” is not allowed.
COST, wrong : This variable name contains a reserved word

“cos”

Variables may represent either a numeric value or a string. String variable
names are written with a dollar sign ($) as the last character. For example:
A$="SALES REPORT".
The dollar sign is a variable type declaration character; that is, it ’declares” that
the variable will represent a string

Numeric variable names may declare integer, single precision, or double precision
values. The type declaration characters for these variable names are as follows:

% Integer variable
t Single precision variable
Double precision variable

The default type for a numeric variable name is double precision

Examples of MSX BASIC variable names:
PI# Declares a double precision value.
MINIMUM! Declares a single precision value.
LIMIT% Declares a an integer value.
N$ Declares a string value.
ABC Represents a double precision value.

34

There is a second method by which variable types may be declared. The MSX-
BASIC statements DEFINT, DEFSTR, DEFSNG, and DEFDBL may be included in a
program to declare the types for certain variable names. Refer to the description
for these statements.

Array Variables

An arrayis a group or table of values referenced by the same variable name. Each
elementin an array is referenced by an array variable that is subscripted with an
integer or an integer expression. An array variable name has as many subscripts
as there are dimensions in the array. For example V(10) would reference a value in
a one-dimension array, T(1,4) would reference a value in a two-dimension array,
and so on. The maximum number of dimensions for an array is 255. But the
maximum number of elements is determined by memory size

The following table lists only the number of bytes occupied by the values repres-
ented by the variable names.

Variables Type Bytes
Integer 2
Single Precision 4
Double Precision 8

Arrays Type Bytes
Integer 2 per element
Single Precision 4 per element
Double Precision 8 per element

Strings 3 bytes overhead plus the present contents of the string.

35

Type Conversion

When necessary, MSX-BASIC will convert a numeric constant from one type to
another. The following rules and examples should be kept in mind.

1. Ifa numeric constantof one typeis set equal to a numeric variable of a different
type, the number will be stored as the type declared in the variable name.(lf a
string variable is set equal to a numeric value or vice versa, a “Type
mismatch” error occurs.)

Example:
10 A% = 23.42
20 PRINT A%
RUN

23

2. During expression evaluation, all of the operands in an arithmetic or relational
operation are converted to the same degree of precision, i.e., that of the most
precise operand. Also, the result of an arithmetic operation is returned to this
degree of precision.

Examples:

10 D=6/7! The arithmetic was performed in double precision and
20 PRINT D the result was returned in D as a double precision value.
RUN
.85714285714286

10DI=6/7 The arithmetic was performed in double precision and
20 PRINT D! the result was returned to DI! (single precision variable),
RUN rounded, and printed as a single precision value.
‚857143

3. Logical operators convert their operands to integers and return an integer
result. Operands must be in the range 32768 to 32767 or an "'Overflow” error
occurs.

36

4. When a floating-point value is converted to an integer, the fractional portion is
truncated.

Example:
10 C%=55.88
20 PRINT C%
RUN
55

5. If a double precision variable is assigned a single precision value, only the first
six digits of the converted number will be valid. This is because only six digits of
accuracy were supplied with the single precision value.

Example:
10 A!=SOR(2)
20 B=A!
30 PRINT AI, B

RUN
1.41421 1.41421

Expressions and Operators

An expression may be a string or numeric constant, a variable, or a combination of
constants and variables with operators which producesa single value.

Operators perform mathematical or logical operations on values. The MSX-
BASIC operators may be divided into four categories:

1. Arithmetic
2. Relational
3. Logical
4. Functional

37

Arithmetic Operators

The arithmetic operators. in order of precedence, are:
Operator Operation Sample Expression

A Exponentiation AAN:

- Negation x
27 Multiplication, Floating- XY

point Division XIY

is Addition, Subtraction x+Y

To change the order in which the operations are performed, use parentheses.
Operations within parentheses are performed first. Inside parentheses, the usual
order of operations is maintained.

Integer Division and Modulus Arithmetic

Two additional operators are available in MSX-BASIC:

Integer division is denoted by the “\"" symbol. The operands are truncated to
integers (must be in the range -32768 to 32767) before the division is performed,
and the quotient is truncated to an integer.

Example:

10\4=2
25.68\6.99=4

Integer division follows multiplication and floating-point division in order of
precedence.

Modulus arithmetic is denoted by the operator MOD. Modulus arithmetic yields
the integer valuethat is the remainderof an integer division.

Example:
10.4 MOD 4=2 (10/4=2 with a remainder 2)
25.68 MOD 6.99=1 (25/6=4 with a remainder 1)

Modulus arithmetic follows integer division in order of precedence.

38

Overflow and Division by Zero

If, during the evaluation of an expression, division by zero is encountered, the
“Division by zero” error message is displayed and execution of program
termimates.

If overflow occurs, the “Overflow” error message is displayed and execution
terminates.

Relational Operators

Relational operators are used to compare twovalues. The result of the comparison
is either “true” (+1) or “false” (0). This result may then be used to make a decision
regarding program flow. (See description for “IF” statements.)

The relational operators are:
Operator Relation Tested Example

= Equality xX=Y

<> Inequality X<>Y
< Less than xX<Y

> Greater than x>Y
Less than or equal to X<=Y

>= Greater than or equal to xX>=Y

(The equal sign is also used to assign a value to a variable.)

When arithmetic and relational operators are combined in one expression the
arithmetic is always performed first. For example, the expression

XHY<(T-1)/Z

is true if the value of X plusY is less than the value of T-1 divided by Z.

More examples:
IF SIN (X) <O GOTO 1000
IF I MOD J< >O THEN K=K+1

39

Logical Operators

Logical operators perform tests on relations, multiple bit manipulation, or
Boolean operations. The logical operator returns a bitwise result which is either
“true” (not zero) or “false” (zero). In an expression, logical operations are per-
formed after arithmetic and relational operations. The outcome of a logical opera-
tion is determined as shown in Table 1. The operators are listed in order of
precedence.

Table 1. MSX-BASIC Relational Operators Truth Table

NOT

x NOTX
1 0
0 1

AND

x Y XANDY
1 1 1

1 0 0
0 1 0
0 0 0

OR

x Y XORY
1 1 1

1 0 1

0 1 1

0 0 0

XOR

x Y XxXXORY
1 1 0
1 0 1

0 1 1

0 0 0

EOV

x Y XEOVY
1 1 1

1 0 0
0 1 0
0 0 1

40

IMP

Y XIMPY
1 1

0 0
1 1

1

oo==x

Just as the relational operators can be used to make decisions regarding program
flow, logical operators can connect two or more relations and return a true or false
value to be used in a decision.

Example:
IF D< 200 AND F<4 THEN 80
IF I>10 OR K<O THEN 50
IF NOT P THEN 100

Logical operators work by converting their operands to 16-bit, signed, two's
complement integers in the range -32768 to 327867. (|f the operands are notin this
range, an error results.) If both operands are supplied as O or 1, logical operators
return O or -1. The given operation is performed on these integers in bitwise
fashion, i.e, each bit of the resultis determined by the corresponding bits in the
two operands.

Thus, it is possible to use logical operators to test bytes fora particular bit pattern.
For instance, the AND operator may be used to “mask” all but one of the bits of a
status byte at a machine I/O port. The OR operator may be used to merge” two
bytesto create a particular binary value. The following examples will help dem-
onstrate how the logical operators work.

63 AND 16-16 63=binary 111111 and 16=binary 10000, so 63 AND 16716.
15AND 14=14 15=binary 1111 and 14=binary 1110, so 15 AND 14=14(binary

1110).
“1 AND 8=8 -1=binary 1111111111111111 and 8=binary, 1000, s0-1

AND 8=8.

4 OR 276 4-=binary 100 and 2=binary 10, so 4 OR 2=6 (binary 110).

10 OR 10=10 10=binary 1010, so 1010 OR 1010=1010 (decimal 10).

-1OR-2=-1 4=binary1111111111111111 and-2=binary
1111111111111110, so-1 OR-2=-1. The bit complement of
sixteen zeros is sixteen ones, which is the two's complement
representation of -1.

NOT X=-(X+1) The two's complement of any integer is the bit complement
plus one.

41

| Functional Operators |

A function is used in an expression to call a predetermined operation that is to be
performed on an operand. MSX-BASIC has "intrinsic”’ functions that reside in the
system, such as SOR (square root) or SIN (sine).

MSX-BASIC also allows “’user-defined”’ functions that are written by the pro-
grammer. See descriptions for “DEF FN".

[String Operators

Strings may concatenated by using +.

Example:
10 A$="FILE" : B$="NAME"
20 PRINT A$+B$
30 PRINT “NEW” +A$+B$
RUN
FILENAME
NEW FILENAME

Strings may be compared using the same relational operators that are used with
numbers:1String comparisons are made by taking one character at a time from each string
and comparing the ASCII codes. If al! the ASCII codes are the same, the strings are
equal. If the ASCII codes differ, the lower code number precedes the higher. If

during string comparison the end of one stringis reached, the shorter string is said
to be smaller. Leading and trailing blanks are significant.
Examples:

VAA" < "AB"
“FILENAME"="FILENAME"
XB DX"
VCL, “>"CL"
“kg KG"
“SMYTH” <“SMYTHE”
B$ <“9/12/83" where B$=""8/12/83"

Thus, string comparisons can be used to test string values or to alphabetize
strings. All string cons.ants used in comparison expressions must be enclosed in

quotation marks.

42

GRAPHICS

There are four different kinds of screen display mode in this compu-
ter, two in Text mode and another two in Graphic mode.

Screen O mode

Screen O mode is one of the Text modes and can display 24 lines with up to
40 characters on each line.
These characters are formed in a 5x7 dot matrix which is in a 6x8 dot font.
So, there is a one dot space on eitherside of the character and line.
In this mode,all the graphic commands and statements cannot be used.
This mode is a default mode after reset

Screen 1 mode

Screen 1 mode is another text mode and can display 24 lines with up to 32
characters per line.
These characters are formed in a 8x8 dot font.
All the graphic commands and statements are not allowed except the sprite
handling statements.
We may as well use this mode about graphic and code character symbols.

Screen 2 mode

This high-resolution graphic mode can display colored dots on a matrix 256
dots in horizontal and 192 dots in vertical.
Theseare sixteen colors available in this mode.

45

Screen 3 mode

This graphic mode is called multi-color mode.
It has 64x48 colored blocks which consist of 4x4 dots.
Each block can be any of sixteen colors.

Color

These are sixteen colors in computer.
Each coloris signified with color code.
Now, the color codes are:

: Transparent
: Black
: Green
: Light Green
: Dark Blue
: Light Blue
: Dark Red
: Cyan
: Red
: Light Red

10 : Yellow
11 : Light Yellow
12 : Dark Green

oONonpwWN—o

13 : Magenta
14 : Gray
15 : White

46

Border, Background and Foreground Color

We may think of the screen's display as of the three layers, one on top of the
other.

At the bottom there is the Border, aboveit there is the Back ground (which in
the Screen O mode covers the Border totally; and in the graphic screen (1 or 2)

“grows down” in size and “exposes” the Border at the top and bottom of the
screen.)

Above the Background comes the Foreground which might be described as a
clear acetate layer that “carries” all the images that appear on the screen on
screen O or 1 it's the text, and on Screen 2 or 3 it's the graphic image.

47

Circle

To begin exploring the graphics capability of the computer type in
the following lines, pressing RETURN after each is completed:

10 SCREEN 2
20 CIRCLE (128,80), 60, 11

30 PAINT (128,80), 11

40 GOTO 40

Now, RUN the program and you will see the yellow circle appear on
the screen and then it will be filled in by the computer's yellow
paintbrush. To understand how this happens, let's look at each line
individually.

10 SCREEN 2

This line causes the computer to display its graphics screen

20 CIRCLE (128,80), 60, 11

Here, you are telling the computer to draw a circle around a center
point that is 128 columns from the left side of the screen, 80 rows
down from the top of the screen, with a radius (distance from the
center of the circle) of 60 points and using the yellow (the number
11) outline.

48

Paint

30 PAINT (128,80), 11

This line introduces you to the PAINT command. This command
tells the computer to use its “paint brush”to fill certain areas. In

line 30 the computer is instructed to fill the circle you have just
outlined in line 20. In order to paint (fill) an object you must give
the computer the coordinates numbers (in parentheses) which de-
signate ‚ vont inside the object (As we just did-giving the coor-
dinates of the center point of our circle). f you had used coordi-
nates which designate a point outside the object, the computer
would have painted the whole background but not fill the object
itself.
u ver, thefill color MUST be the same as the outline color in

our case the number 11 is the same yellow color used for the circle
outline from line 20. The PAINT “recognizes” outlines of objects as
borders only if their color matches the PAINT color. A different
PAINT color will “ignore” the outlines and will paint (fill) the whole
screen-covering the object

40 GOTO 40

Thelast line of this program causes the computer to repeat line 40
so the circle will not disappear. To stop the program press the
CTRL-STOP key combination.

You can experiment with the numbers in this program to vary the
location, size, or color of thecircle being painted.

You can create a vast array of different sized circles and geometric
shapes by adding a few more instructions to the CIRCLE command.
Wewill give you another example of using the circle command and
for additional hints, you should refer to the BASIC.

49

Change the program to read:

10 SCREEN 2 1

20 CIRCLE (128,96), 80, 1, 3.14, 6.28
30 GOTO 30

RUNning the program will give you the following result:

You should see the bottom half of the circle. Should you change
line 20 to be:

50

20 CIRCLE (128,96), 80, 13, 6.28, 3.14

You will see that the top half of the circle is drawn. Another way of
constructing a whole circle is with the following changes in line 20:

51

20 CIRCLE (128,96), 80, 13, 0, 6.28

Those of you who remember your geometry will recall that 3.14 is
pi and 6.28 is 2pi (approximate). The two pi numbers which follow
the color number (#13) on line 20 tell the computer where you
would like the computer to begin and end the circle (how much of
the cirlce you want drawn).

Those of you who are not adept at using variants of pi can just
overlook this business and consult the BASIC.

You can also specify the kind of shape drawn. For example, you can
draw an ellipse (a distorted circle for those of you unfamiliar with
geometry) with the following added feature on line 20.

20 CIRCLE (128,96), 80, 13,,1/4

52

How did we get an ellipse? Well, the three commas after the
number 13 are necessary to inform the computer that we will not
be specifying the starting and ending points of the shape and are
therefore leaving them blank. The computer knows what to do
when we leave it blank. It assumesthat we want the whole shape
drawn. The 1/4 at the end of line 20 tells the computer the height/-
width ratio that we want.

Generaliy, the width of the circle is the same as the radius you
specify. However, if the ratio number at the end of the CIRCLE
command line is less than one (1), the circle will be wider than it is
high, as in the example above where the ratio is "1/4". If the ratio
is greater than one (1), the circle will be higher than it is wide, as in

the following example:

20 CIRCLE (128,96), 80, 13,2

For further information on the CIRCLE command, consult the
BASIC.

53

Line and Box Drawing

LINE
Now that you have seen what your computer can do with circles
and its paintbrush, we'll take a look at lines and boxes. The com-
puter has the same simple method for drawing them as it does for
circles. First, type NEW to clear the memory of the program we
were using before. Now, enter the following

10 SCREEN 2
20 LINE (50, 40)-(200, 150), 8
30 GOTO 30

When you run this program, you will see that a line has been
drawn from high on the left side of the screen to a low point on
the right side of the screen. The line that causes this to happen is
line 20: °

54

20 LINE (50, 40)-(200, 150), 8

This line tells the computer to draw a line from a position 50
points from the left margin on the screen and 40 points down from
the top over to a position that is 200 points from the left margin
and 150 points down from the top. The number 8 designates the
color of the line to be red.

BOX (B)

By simply adding the letter B following a comma to the end of line
20 you will convert this line into a Box.

20 LINE (50, 40)-(200, 150), 8, B

RUNning the program now, will show a box (outlined rectangle) on
the screen. The “B” tells the computer to draw the box at the
same coordinates as the line.

BOX FILL (BF)

Totell the computer to use the paintbrush (fill the box) simply, add
theletter “’F” immediately to theright of the B” in line 20.

55

20 LINE (50, 40)-(200, 150), 8,BF

Now, youwill see that the program draws the same box and paints
the inside with the same coloras the outline.

DRAW

The DRAW command is actually the door to an actual mini-

language within BASIC called “Graphic Macro Language (GML)”
start by clearing the computer's memory.

(type: NEW then press RETURN) Then typethe following lines:

10 SCREEN 2
20 PSET (50, 60), 1

| 30 DRAW “D50 R50 U50 L50”
40 GOTO 40

Line 20 positions your graphic cursor at the X‚Y coordinates (50,
60), and designates the color to be Black (,1)

Line 30 starts the line drawing at the point specified in the PSET
command. It then moves relative to the point, according to the
distance and directional commands specified in the DRAW state-
ment.

Example: DRAW “’U50 R50”

is: Draw fifty units UP then fifty units to the RIGHT.

The quotation marks around the instructions are in quotes because
the DRAW command acts on a character string. Remember, a
character string is a variable that holds characters. Therefore, we
could have written the DRAW example used above in the following
manner.

56

30 T$= “U50 R50 D50 L50”
40 DRAW T$
50 GOTO 50

This second way of DRAWing first defines the object we wish to
DRAW, and then placesit in T$ and then DRAWS T$.

Please note you can draw diagonally using

E = diagonally up and right

F =diagonally down and right

G = diagonally down and left

H = diagonally up and left

57

Sprites

Now that we have learned how to deal with the simpler shapes,
we will examine the more complex type of graphics generation
called SPRITE generation. The best way to understand a sprite is to
imagine it as a magic genie you can create and easily control.

Unlike the graphic commands we have encountered up till now-
which can only create one type of an object, like a line or circle-
the manipulation of sprites is a lot more flexible.

In order to see a sprite on the screen you must dothe following:

STEP 1: Pick one genie “to talk to.” (There are 32 different genies
available to do your bidding). é

STEP 2: You musttell the genie “what you want it to wear.” (In

other words, what shape you wantit to assume).
STEP 3: You must tell it what color to make the shape thatit will
wear.
STEP 4: You musttell it where to appear on the screen.

The importance of this genie metaphor cannot be overstated.
Whenever you do not get the results you expected when com-
manding a genie it is probably because you did not provide all four
pieces of information necessary to make the genie appear.

We will now demonstrate how to instruct a genie. Enter the fol-
lowing program and RUNit.

58

10 SCREEN 2
20 FORT=1TO8
30 READ A$
40 S$ =S$ + CHR$S (VAL ("&B” + A$))
50 NEXTT
60 SPRITES (1)= S$
70 PUT SPRITE 0, (128, 96), 8, 1

80 GOTO 80
100 DATA 00011000
110 DATA 00111100
120 DATA 01111110
130 DATA 01111110
140 DATA 01111110
150 DATA 01111110
160 DATA 00111100
170 DATA 00011000

You should see a red ball appear at the center of the screen. This
ball is the Sprite that we created in the above program. Here is
how it works.

59

Lines 100-170: These lines design the clothes that the genie will
wear (or in straighter language, they contain the design of the
sprite's shape). Each line of the data statement has eight charac-
ters on it. They represent the size of the sprite. The zeros are to
make the display transparent at that point of the shape while the
ones are the points of the display that are lit.

If we took a grid 8 by 8 boxes, the shape would look like this:

Lines 20-50: These lines complete the design of the shape of the
clothes. They set up a loop that will read the set data lines, convert
them into binary strings, append each one to the one that follows
and then store this one shape unit in S$.

Line 60: This line picks the sprite that we will command (#1) and
tellsit to carry the shape contained in S$.

Line 70: This line tells the sprite what color to make the shape,
and where to appear on the screen. This line:

60

70 PUT SPRITE O, (128, 96), 8, 1

is read like this (It's a long sentence, but you'!I be able to follow it):

Put the SPRITE thatis specified at the end ofline, which is #1, on
plane (surface) O, at position (128, 96) which is the center of the
screen, using color #8. The sprite to use is #1.

(Note: In the command, PUT SPRITE (sprite plane), (XY), (Color #),
(Sprite pattern #) the use of different plane numbers allows the
user to place more than one sprite on the screen at once.)

The way we create sprites is very logical. If you are familiar with
any other computer’s BASIC, you will immediately notice how
much easier the sprite manipulation is on the computer. That's
because other systems force you to go PEEKING and POKING
around in their computer's memory.

Sprites are not limited to only 8 by 8 pixels. Sprites can also be
placed within a 16 by 16 box.

When SCREEN sizes O to 1 are selected (screen 1,1), the sprite
size is limited to 8 by 8; however, if sprite size 2 is selected, then
the use of a 16 by 16 boxis allowed. But, the computer fills the 16 by
16 box differently than it fills the 8 by 8 box. The following pro-
gram should illustrate how this works:

61

10 screen 1,2
20 forx=1t0 32
30 read a$
40 restore
50 s$=s$ +chr$ (val ("& b"’+ a$))
60 sprite$ = s$
70 put sprite O, (128, 96), 1, O

80 next x
90 goto 90

100 data 11111111

Notice that the computer first fills a box 8 by 16, and then fills
another 8 by 16 box alongside this one to make 16 by 16.

Therefore, when making 416 by 16 sprite, careful manipulation of
data statements (32 of them) is required.

62

SOUND

There is also a very powerful music synthesizer built-in to
the computer that is easily used by simple BASIC com-
mands to produce music. In addition to the power of this
synthesizer, it is most important to realize that it can do its
work independently of the main microprocessor. What this
means is that you can program the synthesizer to do one
thing while the screen, printer, modem or other peripheral
is doing something else.

The following figure represents the available musical scale that
can be accessed by the sound synthesizer.

, _eeenzg c6 —EeG: bat TT 0“omdeorda |E 9ce Obam te 4ms| anoaf mm 5 ia ©me © 9wa1e EE

===s—ig

65

PLAY

The command that opens the doorto this synthesizer is the BASIC
keyword PLAY. For example, Typing the BASIC statement:

PLAY “CEG”

followed by pressing the return key will produce musical tones of
do-mi-sol from your computer through the speaker on your televi-
sion or monitor. You could achieve the same results by writing a
BASIC program with the following lines:

10 PLAY “CEG”
20 END

The “PLAY” command has the some Music Macro Languages.
This Music Macro Languages help the “PLAY” command to gener-
ate the various Music sound easily. The Music Macro Languages
are:

“O” (OCTAVE)

First, changeline 10 to read:

10 PLAY “olCEG”

Now, when you run the program, you will hear that the sounds
produced are at a very low pitch when compared with the first
ones you made. This is because you have set the OCTAVE by
adding the “ol” before the “CEG”. This is the command that
allows you to access 8 octaves with the synthesizer. Now add this
line:

15 PLAY “o4CEG"

When the program is run, you will hear three low notes (i.e, line
10) followed bv three higher notes (i.e, line 15). The octaves you
can access using the “o” command can range from 1 (lowest) to 8
(highest).

66

“T” TEMPO

Now, change line 10 to read:

10 PLAY "T3201CEG"

The program will now play the same note you heard before but at
a much slower rate. What you did by typing the “T32” before the
“oTCEG” was to set the TEMPO or speed of the music. The values

for “T” can range from 32 (slowest) to 255 (fastest).

You will also notice that the notes in line 15 also play at the
slower pace. This is because the synthesizer will play at whatever
tempo you set until you tell it to play at a different tempo. To
seethis in action, changeline 15 to read:

15 PALY “T25504CEG"

Now, as you can hear, the notes from line 15 play at a much
faster pace than those in line 10.

“L” (LENGTH)

You can also control the length of each note individually. To see
this, change line 10 to read:

10 PLAY “T25501CEL1G"

This changes the ’G” note to a much longer duration than “C” or
“E” and also causes the notes in line 15 to play for a longer time.
This length command can be placed in front of any note to control
the length of the note. The lengths of the notes can be varied from
1 (longest) to 255 (shortest).

Two other BASIC commands that can be applied to sound are the
“Ss” command and the “M" command. These two commands de-
termine the tonal qualities of the note being played. These are
more commonly referred to as the "ENVELOPE” characteristics of
a note.
Everything that creates a sound has unique characteristics.

67

For example: the same note played on a piano and a trumpet may
be at the same pitch but will have two distinctly different sounds.
These two commands allow you to shape the notes you are creat-
ing in the same way.

“S" (SHAPE)

The ’S” command controls the shape of the note. As an illustra-
tion of this, change line 10 to read:

10 PLAY “S104CEG"

and eliminate line 15.

Now, run the program to see the differences in the sounds you
hear. These shape commands can be considered the voices of the
synthesizer. There are 14 of them built in to the computer. This
means that the numbers used to set the “S” command can range
from 1 to 14.

“M" (TONE)

The “M" command controls the tone period or to be more specific,
the amount of time that you will hear each note based onits tonal
qualities. To see how this works, change line 10 to read:

10 PLAY “S10M500004CEG"

As you will hear, this changes the sound dramatically. The values
used to set MM” can range from 1 to 65535.

68

“R” (REST)

You can also insert pauses between notes by using the “R”
command. Change line 10 to read:

10 PLAY “o4CRIER10G"

This causes the C” note to play and then silence is heard for a
while then the ’E” note plays, then a shorter period of silence,
then the "G”' note followed immediately by the C” note again.

“V“ (VOLUME)

The final command we will examine in this section is the “V”
command. This command is used to set the volume of the sound
being produced. Change line 10 to read:

10 PLAY “o4V5CV10EV15G"

You will now hear that each note gets louder than the one before
it. You can set the volume from 0 to 15.

Using a channels of SOUND

So far, we have only used one note at a time to demonstrate the
use of the synthesizer. However, the computer has three separate
channels of sound that can be programmed individually to play
together to create chords.
Change line 10 to read:

10 PLAY “ol CEG”, “o3EFC”, “o5GAB”

69

What you hear now is three notes being played in combination to
create a chord. You can also have each channel play something
entirely different from the others to create a melody and harmony
part in the music you create.

Other than the PLAY statement which allows you to create musi-
cal notes, you can use the SOUND statement to directly cotrol the
various capabilities of the Programmable Sound Generator which
we will refer to as the PSG.

A PSG SOUND statement take the form of:

SOUND< register of psg >, < value >

Where < register of PSG > is one of the 13 available registers the
PSG uses, and < value > is anumber between 1 to 255 The function
of creating a specific sound or sound effect logically follows the
control sequence listed below:

OPERATIONS REGISTERS

Tone generator control RO-R5

Noise generator control R6

Mixer control R7

Amplitude control R8-R10

Envelope generator R11-R13
control

70

FUNCTION

Programmable tone periods.

Programmable noise period.
Enable tone and or noise on selected
channels
Select “fixed” or envelope variable”
amplitudes.
Programmable envelope period and
select envelope pattern.

Tone generator control

The PSG has 3 tone channels A,B and C. The frequency for each
channel is obtained by counting down the input clock by 16 times
the value of the frequency wanted.

For example:

Desired Value = 1789773/(16*frequency)
Lowregister = Remainder of < Desired Value > /256
High register = Integerof < Desired Value > /256

The high and low registers correspond to the register pair used by
each control.

Channel High Register Low Register
A 1 0
B 3 2

c 5 4

Program example follows:

10 Input “frequency”; A
20F=1789773/(16*xA)
30 H=F/256
40 L=F Mod 256
50 SOUND O0, L

60 SOUND 1, H

70 SOUND 8, 15
80 SOUND 7, 254
90 END

71

Amplitude control

In the previous example program, you should notice we used reg-
ister 8 to enable to volume of channel A. The PSG has three
separate register to control the amplitude of the different channels

Channel Register
A 8
B 9

c 10

Each channel can have a volume from 9 to 15 with 15 being the
loudest.

The Amplitude control register can also be used to direct the enve-
lope period of each channel, by setting the Amplitude channel to a
valus of 16, the amplitude of the corresponding channel would be
controlled by reg 11, 12, and 13. For more information on this,
refer to Envelope Period Control Registers.

Mixer control

The MIXER register, register number 7, controls the three Noise /
Tone channels. The Mixers, as previously described, combine the
noise and tone frequencies for each of the three channels. The
determination of combining neither, either or both noise and tone
frequencies on each channel is made by the state of Bit O-Bit 5 of
reg. #7.Bit 6 and 7 are for I/O ports connected through the PSG,
and these are ignored by BASIC.

72

Register 7

B7 B6 B5 B4 B3 B2 B1

Not used Noise channel Tone channel

LILLUN Cc B A Cc B

Bits logical value
1 if channel is disabled
0 if channel is enabled

For example:

SOUND 7,&B 11111110

will turn on tone channel A.

SOUND 7,&B 11110110

will enable both noise and tone channel A.

Envelope period control register

The generation of fairly complex envelope patterns can be accom-
plished two different ways in BASIC. First,it is possible to vary the
frequency of the envelope using register 11 and 12 as a 16 bit
register; and second, the relative shape and cycle of the envelope
can be varied by using register 13.

For example:

< Desired envelope freq > = 1789773/ (256 *freg)

73

Shape register

You can select 9 different shapes for the envelope period output,
by programming the shape register 13.

Selected value Shape

0,1:2,3:9

4,5,6,7

8Ie[Pi
mwPiAJN11

} A7
13

14 FAAAVá15

For example:

SOUND 13, 14

will create a tone modulating up and down according to the enve-
lope period set in register 11 and 12, when the enable bit 4 of
register 8 (SOUND 8, 16) is set.

74

| PSG block diagram

REGISTER BIT B7|B6|B5|B4|B3|B2|B1|BO

RO
‚

8 BIT Fine Tune A
Channel A Tone Period

R1 4 BIT Coarse Tune A

R2 8 BIT Fine Tune B
Channel B Tone Period

R3 4 BIT Coarse Tune B

R4 8 BIT Fine Tune C
Channel C Tone Period PE

R5 4 BIT Coarse Tune C

R6|Noise Period 5 BIT Period Control
.

IN/OUT Noise Tone
R7|Enable

10B/10A| C B A |G B/A
R8|Channel A Amplitude M|L3/L2 U|LO

R9|Channel B Amplitude ó M L3/L2/u/|LO
R10|Channel C Amplitude M|L3/L2 |L |LO

R11 8 BIT Fine Tune E1 Envelope Period
R12 8 BIT Coarse Tune E

R13|Envelope Shape/Cycle fU CONT.| ATT. | ALT. |HOLD

REGISTERED ARRAY
(14 READ/WRITE CONTROL REGISTERS)

75

MSXN-BASIC

MSX-BASIC is an extended version to the Microsoft standard Basic
version 4.5, which includes supports to graphics, music and various
peripherals attached to MSX Home and Personal computer. Gener-
ally, MSX-BASIC is designed to follow the GW-BASIC which is a
standard Basic in 16-bit machine world. But the major effort was
made to make the whole system as flexible and expandable as
possible.

Notation

The following notation is used throughout this book in the descriptions of compu-
ter prompts and your response:

© When inputting, capital and small letters do not have to be differentiated
except for those inside quotes (") (file names e.t.c), which must be
differentiated.

© The categories inside angle brackets “<" “>” are decided by the user.
© The categories inside square brackets “[" “J’ can be omitted or anyone

can be chosen.
© When omitting parameters seperated by comma (,), the procedure is

represented as follows.

EX) CLEAR [<SIZE OF STRING AREA>] [, <STATUS OF MEMORY >]

In the above case, the parameters enclosed in large parameters can be
omitted.

© All commas (‚), semi colons (;), parenthesis (()), slash marks and equal
signs must be entered exactly.

© A +” is used to indicate that the two keys are to be pressed simultane-
ously.

Thus [CTRL]+ means: hold down the CTRL and press STOP.

79

ABS (X)

Returns the absolute value of the expression X, without its sign (+or -). The
answeris always positive double precision number.

Ex) 1O0FOR|=-2TO02
20 PRINT "ABSOLUTE VALUE OF”;

IS"; ABS (|)

30 NEXT |

40 END

RUN

ABSOLUTE VALUE OF -2IS 2
ABSOLUTE VALUE OF1-1 IS 1

ABSOLUTE VALUE OF OISO
ABSOLUTE VALUE OF 1IS 1

ABSOLUTE VALUE OF 2 IS 2

ASC (X$)

Returns a numerical value that is the ASCII code of the first character of the
string X$. If X$ is null, a ’Illegal function call’ erroris returned.

Ex) 10 A$= “ABCdef123@"
20 FOR I= 1 TO 10
30 B$ = MIDS (A$, 1, 1)

40 PRINT “ASCII CODE OF ”; B$,;”

IS” ASC (B$)
50 NEXT : END

RUN

ASCII CODE OF AIS 65
ASCII CODE OF B IS 66
ASCII CODE OFC IS 67
ASCII CODE OF d IS 100
ASCII CODE OF e IS 101
ASCII CODE OF f IS 102
ASCII CODE OF 1 IS 49
ASCII CODE OF 2 IS 50
ASCII CODE OF 3 IS 51
ASCII CODE OF @IS 64

:* ASCII (AMERICAN STANDARD CODE FOR INFORMATION INTERCHANGE)
80

ATN (X)

Returns the arctangent of X in radians. Result is in the range —pi/2 to pi/2. The
expression X may be any numeric type, but the evaluation of ATN is always per-
formed in double precision.

Ex) 10P=3.1415926535#
20 PRINT ”X (DEG.) ATN (X)”

30 FOR I= O TO P STEP P/5
40 PRINT USING"# # # # “ INT(I/P+180);
50 PRINT ATN(I)

60 NEXT |: END

RUN
XxX (DEG.) ATN (X)

0 0
36 5609821 1609574
72 -89863709304242

108 1.0830346193243
144 1.1921125187293
180 1.2626272556706

81

AUTO

AUTO [< line number >[, < increment >]]

To generate a line number automatically after every carriage return.

AUTO begins numbering at <line number > and increment each subsequent line
number by <increment>. The default for both value is 10. If <Line number> is fol-
lowed by a comma but <increment> is not specified, the last increment specified
in an AUTO command is assumed.

If AUTO generates a line number that is already being used, an asterisk is
printed after the line number to warn the user that any input will replace the
existing line. However, typing a carriage return immediately after the asterisk
will save the line and generate the next line number.

AUTO is terminated by typing [Control| +|C] or [Co

+[C] is typed is not saved. After +

command level.

PJ. The line in which
is typed, BASIC returns to

Ex) AUTO 20

82

BASE (<n>)

Cu rrent base address in decimal number for each table of VDP (Video Display
Processor). The description of (n) follows next.

0
1

pn

oon

10
11

12
13
14

15
16
17
18
19

- base of name table for text mode.
- meaningless
- base of pattern generator table for text mode
- meaningless
- meaningless

- base of name table for text mode.
- baseof color table for text mode.
- base of pattern generator table for text mode.
- base of sprite attribute table for text mode.
- base of sprite pattern table for text mode.

- base of name table for high-resolution mode.
- base of color table for high-resolution mode.
- base of pattern generator table for high-resolution mode.
- base of sprite attribute table for high-resolution mode.
- base of sprite pattern table for high-resolution mode.

- base of name table for multi-color mode.
- meaningless
- base of pattern generator table for multi-color mode.

base of sprite attribute table for multi-color mode.
base of sprite pattern table for multi-color mode.

Ex) 10FORI=5TO8
20 PRINT "BASE (";l;")"; TAB (12)

30 PRINT RIGHT$(
“000” + HEX$(BA
SE (N), 4)
40 NEXT |

50 END

RUN
BASE (5) 1800
BASE (6) 2000
BASE (7) 0000
BASE (8) 1B00

83

BEEP

To generate a beep sound. Exactly the same with outputting CHR $ (7).

Ex) 10FORI=0TO5
20 BEEP
30 NEXT |

40 FOR I=0 TO 100 : NEXT |

50FORI=0TO5
60 PRINT CHRS$ (7)
70 NEXT |

RUN

OK

84

BINS (n)

Returns a string which represents the binary value of the decimal argument.
n is a numeric expression in the range -32768 to 32767. If n is negative, the
two's complement form is used. Thatis, BIN$ (-n) is the same as BIN$ (65536
-n).
The answer becomes to be zero suppressed number.

Ex) 10A=123:B=234
20 PRINT A=”; BINS (A);
30 PRINT “B = ”; BIN (B)
40 PRINT “A AND B = ”; BIN$ (A AND B)

50 PRINT ”A OR B =”;BIN$ (A OR B)

60 PRINT "A XOR B BINS (A XOR B)

70 PRINT “A EOVB BIN$ (A EOV B)

80 PRINT A IMP B=”; BIN$ (A IMP B)

90 END
run
A=1111011B=11101010
AANDB=1101010
AORB=11111011
AXORB = 10010001
AEOVB=1111111101101110

AIMPB=1111111111101110

85

BLOAD

BLOAD “< device > :[<file name >]LR], [< offset >]
To load a machine language program from the specified device. If option is spec-
ified, after the loading, program begins execution automatically from the address
whichis specified as BSAVE.

The loaded machine language program will be stored at the memory location
which is specified at BSAVE. If<offset>is specified, all addresses which are spec-
ified at BSAVE are offset by that value.

If thecfile name>is omitted, the next machine language program file encoun-
tered is loaded.

Ex) BLOAD “CAS: LPN", R,5
FOUND: LPN

OK

86

C

=ÌBSAVE
#’|

BSAVE “’< device > [: < file name >], <top address >, < end address >
[<execution address>]
To save a memory image atthe specified memory location to the device.

<top address> and <end address> are the top address and the end address of
the area to be saved.

If <execution address> is omitted,<top address>is regarded as < execution
address>.

Ex) BSAVE “CAS: TEST”, &HA0OO, &HAFFF
BSAVE “CAS: GAME”, &HEOOO, &HEOFF, &HEO20

CALL

CALL <statement > [(argument, argument, …. N

To invoke an expanded statement supplied by ROM cartridge.

’_is an abbreviation for 'CALL'.

Ex) CALL TALK ("A", "B", °C”)
TALK ("A", "B", “C")

87

CDBL(X)

Converts X to a double precision number.
But precision of the answeris same as before conversion,

Ex) 10B1=2.333333#
20 A# = CDBL (B !/1.7)
30 PRINT A#

run
1.3725470588235

OK

CHR$ (X)

Returns a string character whose ASCII code is X. CHR$ is commonly used to
send a special character to the console, etc. This is the opposite of ASC (X$).
If X is control code, the character correspond to that code is not displayed but
the function of that codeis executed.
If X isn't the range O to 255,anIllegal function call error occurs
See Appendix B about the CHARACTER CODE TABLE.

Ex) 10 PRINT chr$ (32) -chr$ (37)"
20 PRINT
30 FOR I= 32 TO 37
40 PRING CHRS$ (!)
50 NEXT

RUN

chr$ (32) - chr$ (37)

%

OK

88

CINT (X)

Converts X to a integer number by truncating the fractional portion.
If Xisn't in the range -32768 to 32767, an ‘Overflow’ error occurs.

Ex) 10B#=1.23456789123454
20 A% = CINT (B # + 3)

30 PRINT A%,
40 C% = CINT (2.3333#)
50 PRINT C%

run
3 2

OK

89

CIRCLE

CIRCLE <{(X,Y) or STEP (X,Y) >, <radius> [‚<color>] [, <start angle >
L <end angle >] [,< ratio >]
To draw an ellipse with a center and radius as indicated by the first of its
arguments.
(X,Y) or STEP (XY) specifies the coordinate of the center of the circle on the
screen.

The <color> defaults to foreground color.

The <start angle> and <end angle> parameters are radian arguments
between O and 2+ Pl which allow you to specify where drawing of the ellipse
will begin and end. If the start or end angle is negative, the ellipse will be
connected to the center point with a line, and the angles will be treated as if

they were positive (Note that this is different than adding 2*PI).

The <ratio> is for horizontal and vertical ratio of the ellipse.

Ex) 10 COLOR 10, 15
20 SCREEN 2
30 CIRCLE (128, 96), 60, 10,, 1.15
40 PAINT (128, 96), 10
50 FOR I= -6.28# TO -0 STEP .3
60 CIRCLE (128, 96), 50, 15, |, 1+. 3, 1.15
70 NEXT
90 COLOR 15, 4, 7
100 GOTO 100
run

90

CLEAR

CLEAR [<string space > [, <highest location >]
To set all numeric variables to zero, all string variables to null, and close all
open files, and optionally to set the end of memory.

< string space >
Space for string variables. Default size is 200 bytes.
< Highest location >
The highest memory location available for use by BASIC.

Ex) 10A=10:B$= "TEST"
20 PRINT A, B$

30 CLEAR
40 PRINT A, B$

50 END
RUN

10 TEST
o

OK

CLOAD

CLOAD ["’<file name > ""]

To load a BASIC program file from the cassette.

CLOAD closes all open files and deletes the current program from memory. If

the <file name> is omitted, the next program file encountered on the tape is

loaded. Forall cassette read operations, baud rate is determined automatically.

Ex) CLOAD “SAMPLE”
FOUND : SAMPLE
OK

91

CLOAD?

CLOAD? [’<file name >"]
To verify a BASIC program on cassette with one in memory. CLOAD?is gener-
ally used right after CSAVE command to confirm tht the program in memory
has stored to tape surely.

EX) CLOAD? “SAMPLE”
FOUND: SAMPEL
OK

CLOSE

CLOSE[# <file number >] [.[#<file number >]]

To close the channel and release the buffer associated with it. If no <file
number> '’s are specified, all open channels are closed.

Ex) 10 SCREEN 2
20 LINE (50, 50)-(100, 100), 10, B

30 OPEN "GRP: FOR OUTPUT AS #
1

40 PRESET (75, 35)
50 PRINT # 1, “BOX”
60 CLOSE
70 GOTO 70
RUN

BOX

82

CLS

Toclear the screen. Valid in all screen modes.

Ex) 10 SCREEN 2: CLS
20 FORI=0TO 15
30 X1 =INT (RND (1)*226)
40 Y1 =INT (RND (1) 192)
50 X2 = INT (RND (1)+ 226)
60 Y2 = INT (RND (1)*192)
70 COLOR |

8O LINE (X1, Y1)-(X2, Y2), B

90 NEXT |

100 FOR I= 0 TO 200 : NEXT |

110 CLS : GOTO 20
RUN

93

COLOR |
COLOR [<foreground color>] [, <background color >] [, <border color >]
To define the color screen. The argument can be in the range of O to 15. Actual
color corresponding to each value is as follows.

Omitting all three color codesis not allowed.

O transparent
black
medium green
light green
dark blue
light blue
dark red
cyan
medium red
light red
dark yellow
light yellow
dark green
magenta
gray
white

ONonnRWUnN—

arRONZDe

Ex) 10 CLS
20 FOR I=OTO 15
3OFORJ=OTO 15
40 PRINT “COLOR”;
50 COLOR I, J
60 FORK =O TO 300 : NEXTK
70 NEXT JI
8OFORI=OTO 15
90 COLOR, |

100 FORK =O TO 300 : NEXT K

110 NEXT |

120 COLOR 15, 4, 7

984

CONT

To continue program execution after BREAK or STOPin execution.

Ex) 1OPRINT” +xx* TEST *x*"
20 STOP
30 PRINT “ PROGRAM”
RUN

*x*x* TEST xxx
BREAK IN 20
OK

CONT
PROGRAM

COS (X)

Returns the cosine of X in radians. COS (X) is calculated to double precision.

Ex) 10P=3.14159265364
20 FOR I= O TO P STEP P/6
25 C != COS (l}

30 PRINT “ COS”; INT (I/P*180);
TAB (9); © = ; C!

40 NEXT |: END

run
Coso =1
COS 29 = .866025
cos59 = 5
COS 90 =-5.15221E-12
COS 120=-.5
COS 150 =-.866025
COS 180 =-1

OK

95

CSAVE

CSAVE “’<file name>”’ [, <baud rate>]
To save a BASIC program file to the cassette tape.

BASIC saves the file in a compressed binary format. ASCII files take up more
space, but some types of access require that files be in ASCII format. For exam-
ple, a file intended to be MERGED must be saved in ASCII format. Programs
saved in ASCII may be read as BASIC data files and text files. In that case, use
the CSAVE command.

<File name> can not be omitted and can be determind up to 6 characters.
< band rate > is a parameter from 1 to 2, which determines the default baud
rate for every cassette write operation. 1 for 1200 baud, 2 for 2400 baud.
The default baud rate can also be set with screen statement.

Ex) CSAVE “SAMPLE”
OK

CSNG (X)

Converts X to a single precision number.

Ex) 101=COS(3.14/4)
20 A = CSNG (|)

30 PRINT |

40 PRINT A
50 END

run
.70738826916719
.707388

oK

96

CSRLIN

Returns the current vertical coordinate of the cursor.
About the horizontal coordinate of the cursor, see to POS statement.
About the horizontal and vertical coordinate of the cursor, see to LOCATE
statement.

Ex) print csrlin — first line
1

OK

printcsrlin — fourth line
4
OK

print csrlin — seventhline
7
OK

97

DATA

DATA<list of constants > ….

To store the numeric and string constants that are accessed by READ statement
(s).

DATA statements are nonexecutable and may be placed anywhere in the pro-
gram. A DATA statement may contain as many constants as will fit on a line
(separated by commas), and any number of DATA statements may be used in a

program. The READ statements access the DATA statements in order (by line
number) and the data contained there may be thought of as one continuous list
of items, regardless of how many items are on a line or where the lines are
placed in the program.

< list of constants > may contain numeric constants in any format; i.e. fixed
point, floating point, or integer. (No numeric expressions are allowed in the list.)
String constants in DATA statements must be surrounded by double quotation
marks only if they contain comma, colons, or significant leading or trailing spa-
ces. Otherwise, quotation marks are not needed.

The variable type (numeric or string) given in the READ statement must agree
with the corresponding constant in the DATA statement. DATA statements may
be read from the beginning or specified line by use of the RESTORE statement.

98

Ex) 10FORI=0TO4
20 READ A$
30 PRINT TAB (5);A$
40 NEXT |

50 READ A, B, C,D
55 PRINT A, B, C, D

60 DATA |I, WANT TO

70 DATA HAVE

80 DATA “YOU, COMPUTER”
90 DATA FROM AVT..!

100 DATA 10, &h10, &010, &B10
110 END

run
1

WANT TO
HAVE

YOU, COMPUTER
FROM AVT

10 16
8 2

OK

99

DEF FN

DEF FN <name> [<parameter>, <parameter>…] = < function
definition>
To define and namea function thatis written by the user.

< name > must be a legal variable name. This name, proceded by FN, becomes
the name of the function. Comprised of the those variable name in the function
definition that are to be replaced when the function is called. The items in the
list are separated by commas. < function definition > is an expression that per-
forms the operation of the function. It is limited to one line. Variable names that
appear in this expression serve only to define the function; they do not affect
program variables that have the same name. A variable name used in a func-
tion definition may or may not appear in the parameter list. If it does, the value
of the parameter is supplied when the function is called. Otherwise, the current
value of the variable is used.

The variables in the parameter list represent, on a one-to-one basis, the argu-
ment variables or values that will be given in the function call.

If a type is specified in the function name, the value of the expression is forced
to that type before it is returned to the calling statement. If a typeis specified in
the function name and the argument type does not match, a ‘Type mismatch’
error OCCUrS.

A DEF FN statement must be executed before the function it defines may be
called. If a function is called before it has been defined, an ‘Undefined user
function’ error occurs. DEF FN is illegal in the direct mode.

Ex) 10 DEF FNLN (X) = LOG (X)/LOG (10)
2ZOPRINT” X LNX) LOGX)”
30 FOR I= 4 TO 1.4 STEP .2
4O PRINT USING * #.# HH.H4HHH HH.HAAHH"|;LOG(I):FNLN(I)

50 NEXT I:END

run
x LN (X) LOG (X)

04 -0.91629 -0.39794
06 -0.51083 -0.22185
08 -0.22314 -0.09691
10 0.00000 0.00000
1.2 0.18232 0.07918
14 0.33647 0.14613

OK

100

DEFINT/DEFSNG/DEFDBL/DEFSTR

DEFINT/DEFSNG/DEFDBL/DEFSTR
< ranges of characters >

To declare variable type as integer, single precision, double precision, or string.

DEFINT/SNG/DBL/STR statements declare that the variable names beginning
with the character(s) specified will be that type variable. However, a type decla-
ration character always takes precedence over a DEFxxx statement in the typ-
ing of a variables.

Ex) 10 DEFINT |

20 DEFSNG J
30 DEFDBL K

40 DEFSTR L

50 1= 1.6:PRINT |

60 J=1/3:PRINT J
70 K = 1/3:PRINT K

80 L = "ABC”:PRINT L

90 CLEAR

100 PRINT LJ;K;L:END

run
1

333333
.33333333333333

ABC
0 0 00

OK

101

DEFUSR

DEFUSR [< digit >]= <start address >
To specify the starting address of an assembly language subroutine.

< digit > may be any digit from O to 9. The digit corresponds to the number of
the USR routine whose address is being specified. If <digit> is omitted, DEFUSR O

is assumed. The value of < start address> is the starting address of the USR
routine.

Any number of DEFUSR statements may appear in a program to redefine sub-
routine starting addresses, thus allowing access to as many subroutines as
necessary.

Ex) 10 CLEAR 200, &HDFFF
20 DEFINT A-Z
3OAD= &HEOOO:DEFUSR=AD
40 FOR I=0 TO 3
50 READ A$
60 POKE AD+,VAL("&h"+A$)
70 NEXT |

80 DATA 23,23,34,C9
90 INPUT b=";B
100 A=USR (B)
110 PRINT"b +1 = "A
120 END

run
b=? 66
b+1=67
OK

102

DELETE

DELETE [< start line number>] [-<end line number >]
To delete program lines.

BASIC always returns to command level after a DELETE is executed.
IF < line number > does notexist, an ‘Illegal function call’ error occurs.

Ex) 10A=1
20B=2
30C =A+B
40D=A’B
50E = A/B
60F=A-B
70 PRINT A,B,C,D,E,F
80 END

DELETE 30-60
OK
list
10A-1
20 B=2
70 PRINT A,B,C,DE,F
80 END
OK

103

DIM

DIM < variable name > (maximum values of subscript,)

To specify the maximum values for array variable subscripts and allocate storage
accordingly.

If an array variable name is used without a DIM statement, the maximum value
of its subscript(s) is assumed to be 10.If a subscript is used that is greater than
the maximum specified, a ‘Subscript out of range’ error occurs. The minimum
value for a subscript is always O.

Ex) 10 DIMAS (5,3)
20FORI=0TO4
30 FORJ=0TO2
40 READ A$ (1,J)

50 PRINT A$(L,J);

55 NEXT Jl
60 DATA 1, 3,5, 2,q, w‚ er, ty
7ODATA |, @,#,$,%, &, ‚(>
run
1352qwerty @#$ %

104

DRAW

DRAW <string expression >
To draw figure according to the graphic macro language.

The graphic macro language commands are contained in the string expression.
The string defines an object, which is drawn when BASIC executes the DRAW
statement. During execution, BASIC examines the value of string and interprets
single letter commands from the contents of the string. These commands are
detailed below:

The following movement commands begin movement from the last point refer-
enced. After each command, last point referenced is the last point the command
draws.

Un ; Moves up
Dn ; Moves down
Ln ; Moves lift

Rn ; Moves right
En ; Moves diagonally up and right
Fn ; Moves diagonally down and right
Gn ; Moves diagonally down and left
Hn ; Moves diagonally up and left

n in each of the preceding commands indicating the distance to move. The
number of points moved is n times the scaling factor (set by the S command).

Mx,y; Moves absolute or relative. If x or y hasa plus sign (+) or a minus
sign(-) in front of it, it is relative. Otherwise, it is absolute.

The aspect ratio of the screenis 1. So 8 horizontal points are equal in length to
8 vertical points.

105

The following two prefix commands may precede any of the above movement
commands.

B ; Moves, but doesn't plot any points.
N ; Moves, but returnsto the original position when finished.

The following commands are also available:

An ; Sets angle n. n may range from O to 3, where O is O degree, 1 is 90,
2 is 180, 3 is 270.

Cn ‚ Sets color n. n may range O to 15.

Sn ; Sets scale factor. n may range from O to 255.
n divided by 4 is the scale factor. For example, if n=1, then the scale
factor is 1/4. The scale factor multiplied by the distance given with
the U‚D,LR,E,F,G,H, and relative M commands gives the actual dis-
tance moved. The default value is U, which means 'no-scaling’ (i.e,
sameas S4)

X <string variable>;

; Executes substring. This allows you to execute a second string from
within a string
Example A$="U8OR80D80L80": DRAW “’XA$;"'

106

In all of these commands, the n, x, or y argument can be a constant like 123 or
it can be '=<variable>;' where <variable> is the name of a numeric variable. The
semicolon(;) is required when you use a variable this way, or in the X command.
Otherwise, a semicolon is optional between commands. Spaces are ignored in

string. For example, you could use variables in a move command this way:

x1=40:X2=50
DRAW “M+ =X1;,-=X2"

The X command can be a very useful part of DRAW, because you can define a

part of an object separate from the entire object and also can use X to draw a

string of commands more than 255 characters long.

Ex) 10 SCREEN 2
20 PSET (220, 191), 10
30 DRAW “U190"
40 FOR I= 189 TO 1 STEP -4
50 A$ = “L" + STRS())+"D"+STR$(I-1}+"R"+STRS8{(L-2}+ “U"+STR$(I-3)
60 DRAW "XA$;"
70 NEXT |

80 GOTO 80
RUN

107

END

To terminate program execution, close all files and return to command level.

END statements may be placed anywhere in the program to terminate execu-
tion. Unlike the STOP statement, END does not cause a BREAK message to be
printed. An END statement at the end of a program is optional but in this case
can notclosefiles.

Ex) 10 PRINT ” *** PROGRAM IS ENDED xxx”
20 END

30 PRINT “ NOT ANY MORE...”
RUN

*** PROGRAM IS ENDED ***
OK

EOF (<n>)

Return -1 (true)if the end of a sequential file has been reached.
Otherwise, returns O. <n> is the file number. Use EOF to test for end-or-file
while INPUTing, to avoid ‘Input past end’ errors.

Ex) 10 OPEN “CAS:DATA” FOR INPUT AS #1
20 IF EOF (1) THEN END
3O INPUT #1,N,R
40 PRINT "SOR(";N;")=";R
50 GOTO 20

108

ERASE

ERASE < variable name >, < variable name >…
To eliminate arrays from a program

Arrays may be redimensioned after they are ERASEd, or the previously allocated
array space in memory may be used for other purposes. If an attempt is made to
redimension an array without first ERASEing it, a 'Redimensioned array’ error
OCCUrS.

Ex) 10 DIM A(5)
20FORI=0TO5
30 READ A(I):PRINT Al);
40 NEXT I:PRINT

50 ERASE A
6OFORI=0TO5
70 PRINT Al);
80 NEXT I:END

90 DATA 1,2, 3,4, 5,6
RUN

109

ERL/ERR

When an error handling subroutine is entered, the variable ERR contains the
error code for error. And the variable ERL contains the line number of the line
in which the error was detected. The ERR and ERL variables are usually used in
IF THEN statements to direct program flow in the error trap routine.

If the statement that caused the error was a direct mode statement, ERL will
contain 65535. Totestif an error occurred in a direct statement, use

IF 65535 = ERL THEN ….

Otherwise, use
IF ERL =<line number> THEN …
IF ERR =<error code> THEN …

Because ERL and ERR are reserved variables, neither may appear to the left of

the equal sign in a LET (assignment) statement.

110

Ex) 10 'GOTO BY ERROR
20 ON ERROR GOTO 80
30 INPUT “+ IF NOT 1°999;A
40 PRINT A
5OIF A <1 OR A> 1000 THEN ERROR 26
60 GOTO 30
70 'ERROR-GOTO
80 IF ERR <> 26 THEN 120
90 PRINT ” * UNPRINTABLE ERROR”
100 PRINT “ * IN —"; ERL

110 RESUME NEXT

120 ON ERROR GOTO 0
130 END
run
* IF NOT 1°999? 500

500
* IF NOT 1999? 2000

2000
* UNPRINTABLE ERROR
*IN-50

* IF NOT 1999?-3
-3

* UNPRINTABLE ERROR
*IN-50

* IF NOT 1999?

111

ERROR < error code >

To simulate the occurrence of an error or to allow error codes to be defined by
the user.

The value of < error code > must be greater than O and less than 255. If the
value of < error code > equals an error code already in use by BASIC, the
ERROR statement will simulate the occurrence of that error, and the corres-
ponding error message will be printed.

To define your own error code, use a value that is greater than any used by
BASIC for error codes. See Appendix G for a list of error codes and messages. (lt
is preferable to use the highest available values, so compatibility may be main-
tained when more error codes are added to BASIC.) This user defined error code
may then be conveniently handled in an error trap routine.

Example:
10 ON ERROR GOTO 1000

120 IF A$ = Y" THEN ERROR 250

1000 IF ERR = 250 THEN PRINT “Sure?”

If an ERROR statement specified a code for which no error message has been
defined, BASIC responds with the message ‘Unprintable error’.
Execution of an ERROR statement for which there is no error trap routine
causes an ‘Unprintable error’ error message to be printed and execution to halt.

Ex) 10 INPUT "ERROR NO. =";A
20 ERROR A
30 END
run

ERROR NO. =? 2
Syntax error in 20

OK
run

ERROR No. =? 10
Redimensioned array in 20

OK

112

EXP (X)

Returns’e'to the power of X.‘e' means the base of natural logarism. X must be <
= 145.062860858862. If EXP overflows, the ‘Overflow’ error messageis printed.

Ex) 1OPRINT” X EXP(X) LOG(EXP(X))"
20 FOR 1=.4 TO 1.4 STEP .2
30 PRINT USING “’#.# #84.HHH", |; EXP (|);

40 PRINT LOG(EXPI())

50 NEXT |: END
run

Xx EXP(X) LOG (EXP(X))

0.4 1.492 _.39999999999985
0.6 1.822 _.59999999999982
0.8 2.226 .79999999999987
10 2718 .99999999999986
1.2 3.320 1.1999999999999
14 4055 14
OK

113

FIX (X)

Returns the integer part of X (fraction truncated). FIX(X) is equivalent to
SGN(X)+INT(ABS(X)). The major difference between FIX and INTis that FIX does
not return the next lower number for negative X.

Ex) 10 FOR A =-1.2345 TO 1.2345 STEP .5

20 PRINT USING “’#4.HHHH"; A;

30 B = FIX (A)

40 PRINT USING “##”; B;

50 B =INT(A)
60 PRINT USING “’##";B
70 NEXT A:END
run
-1.2345-1-2
-0.7345 071

-0.2345 01
0.265500
0.765500

OK

114

FOR >= NEXT

BOR <variable >= X TO Y [STEP < Z>]
NEXT [[< variable >] [, <variable >]]

< variable > can be integer, single-precision or double-precision.

To allow a series of instructions to be performed in a loop a given number of
times.

< variable > is used as a counter. The first numeric expression (X)is the initial
value of the counter. The second numeric expression (Y)is the final value of the
counter. The program lines following the FOR statement are executed until the
NEXT statementis encountered.
Then the counter is incremented by the amount specified by STEP. A checkis
performed to see if the value of the counter is now greater than the final value
(y). If it is not greater, BASIC branches back to the statement after the FOR
statement and the process is repeated. If it is greater, execution continues with
the statement following the NEXT statement. This is a FOR -NEXTloop. If STEP
is not specified, the increment is assumed to be one.

If step is negative, the final value of the counter is set to be less than the initial
value. The counter is decremented each time through the loop, and the loop is
executed until the counter is less than the final value.

The body of the loop is executed one time at least if the initial value of the loop
times the sign of the step exceeds the final value times the sign of the step.

FOR-NEXT loops may be nested, that is, a FOR “NEXT loop may be placed
within the context of another FOR-NEXT loop. When loops are nested, each
loop must have a unique variable name as its counter. The NEXT statement for
the inside loop must appear before that for the outside loop.
If nested loops have the same end point, a single NEXT statement may be used
for all of them. Such nesting of FOR-NEXT loops is limited only by available
memory.

115

The variables) in the NEXT statement may be omitted, in which case the NEXT

statement will match the most recent FOR statement. If a NEXT statement is
encountered before its corresponding FOR statement, a 'NEXT without FOR'
error message is issued and execution is terminated.

Ex) 10 FOR 1=0 TO 100 STEP 10
20 PRINT|;
30 NEXT I:PRINT

40 FORI=O TO 10 STEP 5
50 FOR J=1 TO #4
60 PRINT USING “###"; J;
70 NEXT J: PRINT

80 NEXT I:END

run
0 10 20 40 50 60 70 80

90 100
0 1 2 3 4
5 6 7 8 9

10 11 12 13 14

116

FRE (X)/FRE (" ’')

Arguments to FRE are dummy arguments. FRE returns the number of bytes in

memory not being used by BASIC.

FRE(O) returns the number of bytes in memory which can be used for BASIC
program, text file, machine language program file, etc. FRE(" ”) returns the
number of bytes in memory for string space. For more details, see to Appendix
D

Ex) 20 PRINT ” * FREE BYTES ARE”; FRE(O); "AT NOW”
30 FOR | = 200 TO 1000 STEP 200
40 DIM All)

50 PRINT “ * FREE BYTES ARE”; FRE(O); “AT DIM A(";1;")"
6O ERASE A
70 NEXT END
run

* FREE BYTES ARE 28679 AT NOW
* FREE BYTES ARE 27027 AT DIM A(200)
* FREE BYTES ARE 25427 AT DIM A(400}
* FREE BYTES ARE 23827 AT DIM A(600)
* FREE BYTES ARE 22227 AT DIM A(800)
* FREE BYTES ARE 20627 AT DIM A(1000)

OK

117

GOSUB

GOSUB <line number>
RETURN [<line number }

To branch to subroutine beginning, at<line number>and return from a sub-
routine.
< line number > is the first line of the subroutine. A subroutine may be called
any number of times in a program, and a subroutine may be called from within
another subroutine. Such nesting of subroutines is limited only by available
memory.

The RETURN statement(s) in a subroutine cause BASIC to branch back to the
statement following the most recent GOSUB statement. A subroutine may con-
tain more than one RETURN statement, should logic dictate a return at different
points in the subroutine. Subroutines may appear anywhere in the program, but
it is recommended that the subroutine be readily distinguishable from the main
program. To prevent inadvertent entry into the subroutine, it may be preceded
by a STOP, END, or GOTO statement that directs program control around the
subroutine. Otherwise, a ‘RETURN without GOSUB’ error message is issued and
execution is terminated. ‚

Ex) 10 GOSUB 50
20 GOSUB 50
30 I= 1:GOSUB 50
40 1=2:GOSUB 50
50 ‘subroutine
60 PRINT “subroutine”;
70 PRINT “1 = "|
80 IF 1= 2 THEN RETURN 100
90 RETURN

100 END
run
subroutine I= O

subroutine I= O

subroutine |= 1

subroutine |= 2
OK

118

GOTO

GOTO <line number>
To branch unconditionally out of the normal program sequence to a specified
<line number >.
If < line number > is an executable statement, that statement and those follow-
ing are executed. If it is a nonexecutable statement, execution proceeds at the
first executable statement encountered after <line number>. Only one space is
allowed between GO and TO.

Ex) 10 GOTO 30
20 PRINT “YOU”;: GOTO 70
30 PRINT “I”;

40 PRINT “LOVE”;: GOTO 20
50 PRINT “AVT MSX";
60 PRINT “COMPUTER":END

70 PRINT “,::GOTO 50
run
ILOVEYOU, AVT MSX COMPUTER
OK

119

HEX$ (n)

Returns a string which represents the hexadecimal value of the decimal
argument.

‘n’ is a numeric expression in the range -32768 to 32767. If “n” is negative,
the two's complement from is used. That is, HEX$ (-n) is the same as HEX$
(65536 -n). The answer becomes to be suppressed leading zeros.

Ex) 10 PRINT "HEX DEC”

20 FOR I=O TO 16 STEP 4
30 PRINT RIGHTS ("O" + HEX$(I),2);" ®

40 PRINT USING ##"|
50 NEXT I:END

run
HEX DEC

00 0
04 4
08 8
oc 12
10 16
OK

120

IF-THEN-ELSE
IF-GOTO-ELSE

IF < expression > THEN < statements > ELSE < statements >
IF <expression > GOTO <statements > ELSE <statements >
To make a decision regarding program flow based on the result returned by an
expression.

If the result of < expression > is not zero, the THEN or GOTO clause is exe-
cuted. THEN may be followed by either a line number for branching or one or
more statements to be executed. GOTO is always followed by a line number.If
the result of < expression > is zero, the THEN or GOTO clause is ignored and
the ELSE clause, if present, is executed. Execution continues with the next
executable statement.

Ex) A=1:B=2-A=B is zero (FALSE).

A=2:8=2-A=B is not zero (TRUE).

IF -THEN-ELSE statements may be nested. Nesting is limited only by the length
of the line. If the statement does not contain the same number of ELSE and
THEN clauses, each ELSE is matched with the closest unmatched THEN. For
example,

IF A =B THEN IF B = C THEN PRINT “A = C”
ELSE PRINT “A <> C”

will not print “A < > C” when A < > B. lt will
print "A <> C” when A=BandB <> C.

121

If an IF-THEN statement is followed by a line number in the direct mode, an
‘Undefined line’ error results unless a statement with the specified line number
had previously been entered in the indirect mode.

Ex) 10 INPUT “INPUT No."; N: PRINT" “
20 IF N = 1 THEN PRINT “ABC”
30 IF N = 2 THEN PRINT “DEF”
40 IF N = 3 THEN PRINT “GHI”
50 IF N = 4 THEN GOTO 70
60 PRINT:GOTO 10
70 END
run
INPUT No.?1

ABC

INPUT No.? 3
GHI

INPUT No. ? 4

OK

122

INKEY $

Returns either a one character string containing a character read from the key-
board or a null string if no key is pressed. No characters will be echoed and all
characters are passed through to the program except for which ter-
minates the program.

Ex) 10 PRINT “Hit any key or space barto end”
20 I$ =INKEYS:IF I$ = “ THEN 20
30 IF I$ =" ” THEN PRINT "ENDED !:END
40 PRINT I$:” 'S ASCII CODE IS “;ASC(I$)
50 GOTO 10
run
Hit any key or space bar to end
TS ASCII CODE IS 49
Hit any key or space bar to end
D'S ASCII CODE IS 68
Hit any key or space bar to end
*'S ASCII CODE IS 42
Hit any key or space bar to end
ENDED !

Ok

123

INP (n)

Returns the byte read from the port n. n must be in the range O to 255. INP is
the complementary function to the OUT statement.

In above statements and functions, port number (n) is handled with 16bit
number to support Z80's capability that accesses I/O port with [BC] register
pair. However, standard MSX system does not support those extended I/O
address space, port number larger than 255 is meaningless.

Ex) 10CLS
20 PRINT “PUSH SPACE, HOME, INS, DEL, CURSOR KEYS !”

30 OUT 170, (INP (170) AND &HFO) OR 8
40 LOCATE 10, 1O:PRINT RIGHT$ (“O000000”’+BIN$ (INP(169)), 8):G
OTO 30

run
PSH SPACE, HOME, INS, DEL, CURSOR KEYS!

INPUT

INPUT [*< prompt string >"’;] <variable>, < variable> ….
To allow input from the keyboard during program execution.

When an INPUT statement is encountered, program execution pauses and a

question mark is printed to indicate the program is waiting for data. If “< prompt
string >” is included, the string is printed before the question mark. The
required datais then entered at the keyboard.

The data that is entered is assigned to the variable(s) given in order of variables.
The number of data items supplied must be the same as the number of varia-
bles. Data items are separated by commas.

The variable name may be numeric or string variable names (including sub-
scripted variables). The type of each data item thatis input must agree with the
type specified by the variable name. (Strings input to an INPUT statement need
not be surrounded by quotation marks.)

Responding to input with the wrong type of value (string instead of the numeric,
etc.) causes the message ‘’?Redo from start” to be printed. No assignment of
input value is made until an acceptable response is given.

Ex)
list
10 INPUT ”A and B”; A, B

20 PRINT A+B

Ok
run
A and B? 10, @O
?Redo from start
A and B? 10, 20

30
Ok

125

Responding to INPUT with too many items causes the message “’?Extra ignored”’
to be printed and the next statement to be executed.

Ex)
list
10 INPUT “A and B ”;A,B
20 PRINT A+B

Ok
run
A and B?10, 20, 30
?Extra ignored
30

Ok

Responding to INPUT with too few item causes two question marks to be
printed and a wait for the next data item.

Ex)

list
10 INPUT "A and B”; A,B
20 PRINT A+B

Ok
run
A and B? 10 (The 10 was typed in by the user)
7220 (The 20 wastyped in by the user)
30

Ok

Escape INPUT by typing [Control]+|C] or the “CTRL” and “STOP” keys simultane-
ously. BASIC returns to command level and types “Ok”. Typing CONT resumes
execution at the INPUT statement.

126

INPUT #

INPUT # <file number >, <variable> [, <variable >.…..]

To read data items from the specified channel and assign them to program
variables.

The type of data in thefile must match the type specified by the < variables >.
Unlike the INPUT statement, no question mark is printed with INPUT state-
ment.

The data items in the file should appear just as they would if data were being
typed in response to an INPUT statement. With numeric values, leading spaces,
carriage return, and line feeds are ignored. The first character encountered that
is not a space, carriage return, or line feed is assumed to be start of a number.
The number terminates on a space, carriage return, line feed, or comma.

Also, if the BASIC is scanning the data for a string item, leading spaces, car-
riage returns and line feeds are ignored. The first character encountered that is
not a space, carriage return, or line feed is assumed to be the start of a string
item. If this first character is a double-quotation mark ("), the string item will
consist of all characters read between the first quotation mark and the second.
Thus, a quoted string may not contain a quotation mark as a character.

If the first character of the string is not a quotation mark, the string is an
unquoted string, and will terminate on a comma, carriage return, line feed, or
after 255 characters have been read. If end offile is reached when a numeric or
string item is being INPUT, the item is terminated.

Ex) 10 OPEN “CAS:DATA" FOR INPUT AS #1
20 INPUT #1, A,B
30 PRINT “DATA A=”;
40 PRINT “DATA B =

50 END

127

| INPUT $

INPUT $ (n, [#]< file number >)
To Return.a string of n characters, read from the file. < file number > is the
number which the file was OPENed.

Ex) 10 'PASSWORD : “MSX"+'ESC'KEY
20 P$ = “MSX"+CHR$ (27)
30 PRINT “Password “;

40 A$ = INPUT $(4):PRINT A$
50 IF A$ <> P$ THEN PRINT” You are NOT allowed !”:GOTO 30
60 PRINT:BEEP:PRINT"* Welcome to MSX world!
70 END
run
Password ABCD
You are NOT allowed!
Password MSX

Welcome to MSX world!
OK

128

INSTR

INSTR ([N], X$, Y$)

Searches for the first occurrence of string Y$ in X$ and returns the position at
which the match is found. Optional offset N sets the position for starting the
search. N must be in the range O to 255. If | >LEN (X$) or if X$ is null or if Y$

cannot be found or if X$ and Y$ are null, INSTR returns O. If only Y$ is null,
INSTR returns N or 1. X$ and Y$ may be string variables, string expressions, or
string literals.

Ex) 10 ‘*x+ PIANO x**x

20 PRINT *C = Do”
30 TB$ = “AZSXCFVGBNJMK,L./,02WE4RS5T6YU8I9 Op-[E]"
40 PLAY"L8"
50 INS = INKEYS:IF IN$ = ” ” THEN GOTO 50
60 | = INSTR (TB$, IN$)
70 IF | > O THEN |= +32
80 PLAY N= I;”

90 GOTO 50
run
C=Do

129

INT (X)

Returnsthe largest integer <= X.

Compare to FIX statement.

Ex) 10 PRINT X", “INT(X)"

20 FOR 1=-2.4 TO 2.4
30 PRINTI, INT (!)

40 NEXT END
run
x INT(X)

-24 -3
-14 -2
-4 +1

6 0
1.6 1

OK

130

INTERVAL ON/OFF/STOP

To activate /deactivate trapping of time interval in a BASIC program.

An INTERVAL ON statement must be executed to activate trapping of time inter-
val. After INTERVAL ON statement, if a line number is specified in the ON
INTERVAL GOSUB statement then every time BASIC starts a new statementit
will check the time interval. If so it will perform a GOSUB to the line number
specified in the ON INTERVAL GOSUB statement.

If an INTERVAL OFF statement has been executed, no trapping takes place and
the eventis not remembered evenif it does take place.

If an INTERVAL STOP statement has been executed, no trapping will take place,
but if the timer interrupt occur, this is remembered so an immediate trap will
take place when INTERVAL ON is executed.

Ex) 10 ON INTERVAL = 100 GOSUB 80
20 N = 20:CLS:COLOR 2
30 LOCATE5, 5:PRINT"TIME"
40 INTERVAL ON
50 LOCATE 5, 7:PRINT SPACES (128)
60 LOCATE 5, 7:PRINT STRINGS(N,"*"')
70 GOTO 60
80’
90 N=N-1
100 IF N < O THEN END

110 IF N > 10 THEN COLOR 10
120 IF N < 5 THEN COLOR 8
130 RETURN 50

TIME

HAK KKK KKK KK AKKKKAKK

131

KEY

KEY < function key #>''< string characters > ”

To set a string to specified function key < function key # > must be in the range
1 to 10. < string characters > must be within 15 characters.

Ex)
key 1, “LOAD”

color auto goto list run LOAD auto goto list run

KEY LIST

To list the contents of all function keys.

Ex) KEY LIST

color
auto
goto
list
run
color 15, 4,4
cload”
cont
list.
run

Ok

“color” aligns with key “f1", “auto” with “f2", “goto” with “f3", and so on.
Position in the list reflects the key assignments. Note that control characters
assigned to a function key is converted to spaces.

132

KEY (n) ON/OFF/ STOP

To activate/deactivate trapping of the specified function key in a BASIC
program.

A KEY(n)ON statement must be executed to activate trapping of function key.
After KEY(n)ON statement, if a line number is specified in the ON KEY GOSUB
statement then every time BASIC starts a new statement it will check to see if

the specified key was pressed. If so it will perform a GOSUB to the line number
specified in the ON KEY GOSUB statement.

if a KEY(n)OFF statement has been executed, no trapping takes place and the
eventis not remembered even if it does take place.

If a KEY(n)STOP statement has been executed, no trapping will take place, but if

the specified key is pressed this is remembered so an immediate trap will take
place when KEY(n)ON is executed.

KEY{(n)ON has no effect on whether the function key value are displayed at the
bottom of the console.

133

Ex) 10 ON KEY GOSUB 80, 90, 100, 110, 120, 130, 140, 150, 160, 170
20 KEY(1) ON:KEY(2) ON
30 KEY(3) ON:KEY(4) ON
40 KEY(5) ON:KEY(6) ON
50 KEY(7) ON:KEY(8) ON
60 KEY(9) ON:KEY(10) ON
70 GOTO 70
80 N = 1:GOTO 180
90 N = 2:GOTO 180

:GOTO 180
:GOTO 180
:GOTO 180
:GOTO 180
:GOTO 180
:GOTO 180

160 N = 9:GOTO 180
170N=10
180 PRINT USING “ F- ## KEY IS DEPRESSED";‚N
190 RETURN

run
F- 1 KEY IS DEPRESSED
F- 3 KEY IS DEPRESSED
F-10 KEY IS DEPRESSED

134

KEY ON/OFF

To turn on/off function key display on 24th line of text screen.

Ex) KEY OFF
OK

KEY ON
OK
color auto goto list run

LEFT $

LEFT $ (X$, |)

Returns a string comprising the leftmost | characters of X$. | must be in the
range O to 255.If I is greater than LEN (X$), the entire string (X$) is returned. If

1=0, a null string (length zero)is returned.

Ex) 10 INPUT A$
20 FOR |= 1 TO LEN(A$)
30 PRINT LEFTS(A$, |)

40 NEXT |

50 END

run
? AVT

A
AV
AVT
OK

135

LEN (X$)

Returns the number of characters in X$. Nonprinting characters and blanks are
counted.

Ex) 10 A$ = daewoo computer”
20 PRINT LEN(A$)

run
15

LET

[LET] <variable> = <expression>
To assign value of an expression to a variable.

Notice the word LET is optional; i.e. the equal signis sufficient when assigning
an expression to a variable name.

Ex) 1OLETA= 10:PRINT A
20 A = 5:PRINT A
3O LET A = 1:PRINT A
40 END
run
10
5
1

OK

136

| LINE

IE [ee 1) h Ie 2) B
STEP p41, v1)|l7|sTEP (x2, v2)| [< color code >] t| Bel

To draw line connecting the two specified coordinate. Forthe detail of the <coor-
dinate specifier>, see description at PUT SPRITE statement.

If ’B' is specified, draws rectangle.If 'BF" is specified, fills rectangle.

Ex) 10 SCREEN 2
15 CLS
20 FOR I= O TO 95 STEP 3
30 LINE (131-1, 95-I)-(131+, 95+), 10, B

40 NEXT I

50 GOTO 50

137

LINE INPUT

LINE INPUT [*’< prompt string >’ ;] <string variable>
To input an entire line (up to 254 characters) to a string variable, without the
use of delimiters.

The prompt string is a string literal thatis printed at the console before inputis
accepted. A question mark is not printed unless it is part of the prompt string.
All input from the end of the prompt to the carriage return is assigned to <string
variable>.

Escape LINE INPUT by typing Control]+ C]or the “CTRL” and “STOP” keys simul-
taneously. BASIC returns to command level and types “Ok”. Typing CONT

resumes execution at the LINE INPUT statement.

Ex) 10 PRINT “ * YOU CAN PRINT” CHR$(34); "&";CHR$(44)
20 PRINT ” * BY ‘LINE INPUT"
30 LINE INPUT A$

40 PRINT A$ ="; A$
50 END
run

* YOU CAN PRINT "&,
* BY 'LINE INPUT"

“AVT”, MSX
A$ = “AVT”, MSX
OK

138

LINE INPUT #

LINE INPUT # <file number>, <string variable >
To read an entire line (up to 254 characters), without delimiters, from a sequen-
tial file to a string variable.

< file number > is the number which thefile was OPENed.

< string variable > is the name of a string variable to which the line will be
assigned.

LINE INPUT# reads all characters in the sequential file up to a carriage return. It

then skips over the carriage return/line feed sequence, and the next LINE

INPUT# reads all characters up to the next carriage return. (lf a line feed/car-
riage return sequence is encountered, it is preserved. That is, the line feed/car-
riage return characters are returned as part of the string).

LINE INPUT# is especially useful if each line of a file has been broken into
fields, or if a BASIC program saved in ASCII mode is being read as data by
another program.

Ex) 10 OPEN “CAS:DATA" FOR INPUT AS #1
20 LINE INPUT #1, A$
30 PRINT A$
40 CLOSE:END

139

LIST

LIST [< line number> [-[<line number >]]]
To list all or part of the program.

If both < line number > parameters are omitted, the program is listed, beginning
at the lowest line number.

If only the first < line number > is specified, that line is listed.

If the first < line number > and -” are specified, that line and all higher-
numbered lines are listed.

If *-” and the second < line number > are specified, all lines from the beginning
of the program through that line are listed.

If both < line number > parameters are specified, the range from the first < line
number > through the second < line number > is listed.

Listing is terminated by typing “CTRL” and “STOP” keys at the same time.
Listing is suspended by typing “STOP” key, and it is resumed by typing “STOP”
key again.

Ex) 10A=3
20B=6
30C=A+B
40 PRINT A, B, C

50 END

list
10A=3
20B=6
30C =A+B
40 PRINT A, B, C

50 END
OK

LLIST

OK

140

LIST

LIST [<line number> [- [<line number>]]]
To list all or part of the program on the printer. (See the LIST command for
details of the parameters)

LOAD

LOAD “<file name >“ [,R]

To load a BASIC program file from the device.

LOAD closesall open files and deletes the current program from memory.
However, with the “R” option, all data files remain OPEN and execute the
loaded program.

If the < file name > is omitted, the next program, which should be an ASCII file,
encountered on the tapeis loaded. Control+[Z] is treated as end-of-file.

Ex) LOAD “CAS:TEST"
Found: TEST

141

LOCATE

LOCATE [<X>][,< Y >] [,< cursor display switch >]
To locate character position for PRINT. < cursor display switch > can be speci-
fied only in text mode.

O:disable the cursor display
1:enable the cursor display

Ex) 10 A$ = "ABCDEFGHIJKLMN”
20 CLS: FOR I= 1 TO 15
30 LOCATE |, I-1:PRINT LEFTS(A$, |)

40 NEXT END
run
A

AB
ABC
ABCD
ABCDE
ABCDEF
ABCDEFG
ABCDEFGH
ABCDEFGHI
ABCDEFGHIJ
ABCDEFGHIJK
ABCDEFGHIJKL
ABCDEFGHIJKLM
ABCDEFGHIJKLMN
ABCDEFGHIJKLMN

OK

142

LOG (X)

Returns then natural logarithm of X. X must be greater than zero.

Ex) 10 FOR 1=10 TO 50 STEP 10
20 PRINT * LOG(";1;")=“;LOG(I)

30 NEXT LEND

run
LOG (10)= 2.302585092994
LOG (20)= 2.995732273554
LOG (30)= 3.4011973816622
LOG (40)= 3.6888794541139
LOG (50 }= 3.912023005428
OK

LPOS (X)

Returns the current position of the line printer print head within the line printer
buffer. Does not necessarily give the physical position of the print head. X is a
dummy argument.

Ex) 10 PRINT LPOS(X)
20 LPRINT “ABCDEFG";
30 PRINT "AT 30:";LPOS(X)
40 LPRINT “HIJKLNOP”;
50 PRINT "AT 50:";LPOS(X)

. 60 LPRINT “ORS”
70 PRINT “AT 70:";LPOS(X)
80 END
run

0
AT 30:7
AT 50:15
AT 70:0
Ok

143

LPRINT/LPRINT USING

To print data at the line printer. (see PRINT and PRINT USING statements below
for details.)

Ex) 10 PRINT “PRINT ANY SENTENCE"
20 LINE INPUT A$
30 PRINT A$
40 LPRINT A$
50 END
run

PRINT ANY SENTENCE

‚MAXFILES

MAXFILES =< expression>

To specify the maximum number of files opened at a time.
< expression > can be in the range of O = 15. When 'MAXFILES = 0’ is exe-
cuted, only SAVE and LOAD can be performed.
The default value assigned is 1.

Ex) 10 MAXFILES = 3
20 OPEN “CAS:DATA 1" FOR OUTPUT AS #1

30 OPEN “CRT:DATA 2" FOR OUTPUT AS #2
40 OPEN “LPT:DATA 3" FOR OUTPUT AS #3
60.

144

MERGE

MERGE “<device > [<file name >]"”

To merge the lines from an ASCII program file into the program currently in

memory.
If any lines in the file being merged have the same line number as lines in the
program in memory, the lines from the file will replace the corresponding lines
in memory.
After the MERGE command, the MERGED program resides in memory, and
the BASIC returns to command level.
If the <file name> is omitted, the next program file, it should be ASCII file,
encountered on thetape is MERGED. [Control]+[Z] is treated as end-of-file.

Ex) MERGE “CAS:SAMPLE"
FOUND:SAMPLE

OK
RUN

‚ MIDS

MID$ (X$, I.J])
Returns a string of length J character from X$ beginning with the Ith charac-
ter. | and J must be in the range 1 to 255. If J is omitted orif there are fewer
than J character to the right of the Ith character, all rightmost characters
beginning with the Ith characterare returned. If I>LEN(X$), returns a null string.

Ex) 10A$="ABC12345+x?="
20 PRINT MID$(A$, 4, 7)

30 END

run
12345++x
Ok

145

MID $

MID $ (<string exp. 1>), n[‚m)]) = <string exp. 2>
To replace a portion of one string with another string.
The character in <string exp. 1>, beginning at position n, are replaced by the
characters in <string exp.2>_The optional m refers to the number of characters
from <string exp. 2> that will be used in the replacement. If m is omitted or
included, the replacement of characters never goes beyond the original length of

<string exp. 1>.

Ex) 10 A$ = “abcdefg”
20 B$ = “h swearty”
30 PRINT A$;" ;B$
40 PRINT
5OFORI=1TO7
60 C$=A$
70 MID$(C$, |, 3) = B$

80 PRINT C$;“ ”;l

90 NEXT

run
abcdefg h swearty

hsdefg 1

ah sefg 2
abh sfg 3
abch sg 4
abcdh s 5
abcdeh 6
abcdefh 7

146

MOTOR

MOTOR [< ON/OFF >]
To change the status of cassette motor switch. When no argument is given,
flips the motor switch. Otherwise, enables/disables motor of cassette.

Ex) MOTOR ON
Ok

MOTOR OFF
Ok

NEW

To delete entire program from working memory and reset all variables.

Ex) list
10 A$="ABC12345++*?="
20 PRINT MID$(A$, 4, 7)
30 END
OK

NEW
oK

list
OK

147

OCT $ (n)

Returns a string which represents the octal value of the decimal argument.

n is a numeric expression in the range -32768 to 65535. If n is negative, the
two's complement form is used. That is, OCT$ (-n) is the same as OCT$
(65536-n).

Ex) 1O PRINT” X OCT(X)”

20 FOR I= 1 TO 16 STEP 2
30 PRINT USING “## &&”; LOCTS (1)

40 NEXT I:END

run
xXx OCT (X)

1 1

3 3
5 5
7 7
9 11

11 13
13 15
15 17
OK

148

ON ERROR GOTO

ON ERROR GOTO <line number >
To enable error trapping and specify the first line of the error handling sub-
routine.

Once error trapping has been enabled all errors detected, including direct mode
errors (e.g., SN (Syntax) errors), will cause a jump to the specified error handling
subroutine. If < line number > does not exist, an ‘Undefined line number’ error
results. To disable error trapping, execute an ON ERROR GOTO O. Subsequent
errors will print an error message and halt execution. An ON ERROR GOTO O

statement that appears in an error trapping subroutines causes BASIC to stop
and print the error message for the error that caused the trap.lt is recom-
mended that all error trapping subroutines execute an ON ERROR GOTO O if an
error is encountered for which there is no recovery action.

If an error occurs during execution of an error handling subroutine, the BASIC
error message is printed and execution terminates. Error trapping does not
occur within the error handling subroutine.

Ex) ON ERROR GOTO 100

149

ON GOSUB/ON GOTO

ON <expression> GOSUB <line number>.….
GOTO

To branch to one of several specified line numbers, depending on the value
returned when an expression is evaluated. The value of < expression > deter-
mines which line number in the list will be used for branching. For example, if

the value is three, the third line number in the list will be the destination of the
branch. (lf the value is a noninteger, the fractional portion is discarded.)

In the ON-GOSUB statement, each line number in the list must be thefirst line
number of a subroutine.

If the value of <expression> is zero or greater than the number of items in the
list (but less than or equal to 255), BASIC continues with the next executable
statement. If the value of <expression> is negative or greater than 255,a ‘illegal
function call’ error occurs.

Ex) 10 INPUT “INPUT NO. (1-3)";A
20 ON A GOTO 40, 50, 60
30 GOTO 10
40 PRINT A = 1:GOTO 10
50 PRINT ”A

= 2:GOTO 10
60 PRINT “A = 3:GOTO 10
70 END
run
INPUT NO. (1-3)? 2

A=2
INPUT NO. (1-3)? 3

A=3
INPUT NO. (1-3)? 6
INPUT NO. (1-3)? 1

A=1
INPUT NO. (13)?

150

ON INTERVAL GOSUB

ON INTERVAL = <time interval > GOSUB <line number >
To set up a line number for BASIC to trapto time interval.

Generates a timer interrupt at every < time interval > /60 second.

When the trap occurs an automatic INTERVAL STOP is executed so receive
traps can never take place. The RETURN from the trap routine will automatically
do a INTERVAL ON unless an explicit INTERVAL OFF has been performed inside
the trap routine.

Event trapping does not take place when BASIC is not executing a program.
When an error trap (resulting from an ON ERROR statement) takes place this
automatically disables all traps (including ERROR, STRIG, STOP, SPRITE, INTER-
VAL and KEY).

151

ON KEY GOSUB

ON KEY GOSUB <list of line numbers>
To set up a line numbers for BASIC to trap to when the function key is
pressed.

Example
ON KEY GOSUB 100, 200,, 400,, 500

When a trap occurs, an automatic KEY(n) STOP is executed so receive traps can
never take place. The RETURN from the trap routine will automatically do a
KEY(n) ON unless an explicit KEY(n)OFF has been performed inside the trap
routine.

Event trapping does not take place when BASIC is not executing a program.
When an error trap (resulting from an ON ERROR statement) takes place this
automatically disables all trapping (including ERROR, STRIG, STOP, SPRITE,
INTERVAL and KEY).

Ex) 10 ON KEY GOSUB 50, 60, 70, 80
20 KEY(1) ON:KEY(2) ON
30 KEY(3) ON:KEY(4) ON
40 GOTO 40
50 N = 1:GOTO 90
60 N = 2:GOTO 90
70 N = 3:GOTO 90
8O N = 4:GOTO 90
90 PRINT USING “ F- ## key is depressed";‚N
100 RETURN

RUN

F-1 key is depressed
F-2 key is depressed
F- 3 key is depressed
F-4 key is depressed

152

ON SPRITE GOSUB

ON SPRITE GOSUB< line number >
To set up a line number for BASIC to trap to when the sprites coincide.

When the trap occurs, an automatic SPRITE STOP is executed so receive traps
can never take place. The RETURN from the trap routine will automatically do a
SPRITE ON unless an explicit SPRITE OFF has been performed inside the trap
routine.

Event trapping does not take place when BASIC is not executing a program.
When an error trap (resulting from an ON ERROR statement) takes place this
automatically disables all trapping (including ERROR, STRIG, STOP, SPRITE,
INTERVAL and KEY).

Ex) 1OAS$=" <<<20B$="<We<<<n-"
30 SCREEN 2
40 ON SPRITE GOSUB 140
50 SPRITE$(O) = A$
60 SPRITE$ (1) = B$
70 SPRITE ON
80 XA = RND(1) + 100
90 XB = RND(1) * 100
100 FOR Y=0TO 191
110 PUT SPRITE O, (50+XA, Y), 6
120 PUT SPRITE 1, (50+XB, 191-Y), 3
130 NEXT Y:GOTO 70
140 SPRITE OFF
150 PLAY “LACEDFDECREFGAGFER”
160 IF PLAY (0) THEN 160
170 PUTSPRITE 0, (0, 208)
180 PUT SPRITE 1, (0, 208)
190 Y= 191:RETURN

153

ON STOP GOSUB

ON STOP GOSUB <line number>
To set up a line numbers for BASIC to trap to when the Control-STOP key is
pressed.

When the trap occurs an automatic STOP, STOP is executed so receive traps
can never take place. The RETURN from the trap routine will automatically do a
STOP ON unless an explicit STOP OFF has been performed inside the trap
routine.

Event trapping does not take place when BASIC is not executing a program.
When an error trap (resulting from an ON ERROR statement) takes place this
automatically disables all trapping (including ERROR, STRIG, STOP, SPRITE,
INTERVAL and KEY).

The user must be very careful when using this statement. For example, follow-
ing program cannot be aborted. To only way left is to reset the system!

Ex) 10 ON STOP GOSUB 60
20 STOP ON
30 INPUT A$:PRINT A$
40 IF A$ = “END” THEN STOP OFF: END

50 GOTO 30
60 PRINT “PLEASE, PRINT ‘END’ ”

70 RETURN

run
? BCD

BCD

PLEASE, PRINT ‘END’

BCD
? END

END
OK

154

ON STRIG GOSUB

ON STRIG GOSUB <list of line numbers>
To set up a line numbers for BASIC to trap to when the trigger button is

pressed.

Ex) ON STRIG GOSUB, 200,, 400

When the trap occurs an automatic STRIG(n) STOP is executed so receive traps
can nevertake place. The RETURN from the trap routine will automatically do a
STRIG(n) ON unless an explicit STRIG(n) OFF has been performed inside the
trap routine.

Event trapping does not take place when BASIC is not executing a program.
When an error trap (resulting from an ON ERROR statement) takes place this
automatically disables all trapping (including ERROR, STRIG, STOP, SPRITE,
INTERVAL and KEY).

Ex) TOCLS
20 ON STRIG GOSUB 80
30 STRIG (0) ON
40 PRINT “IF YOU DEPRESS SPACE BAR”
50 GOTO 50
80 COLOR 15, 1,1
90 PLAY "T255CEG"
100 LOCATE8, 12:PRINT “PUSHED ! | 1”

110 FOR I= 0 TO 100:NEXT |

120 LOCATE 8, 12:PRINT SPC(10)
130 COLOR 15, 4,7
140 RETURN

155

|OPEN]

OPEN “’<device descripter> [:] [<file name>]”' [FOR <mode>] As [#]
< filenumber>
Toallocate a buffer for I/O and set the mode that will be used with the buffer.

This statement opens a device for further processing. Currently, following devi-
ces are supported.

CAS : cassette
CRT : CRT screen
GRP : Graphic screen
LPT : line printer

Device descriptors can be added using the ROM cartridge. See SLOT. MEM for
further details.

<mode> is one of the following:

OUTPUT : Specifies sequential output mode
INPUT : Specifies sequential input mode
APPEND: Specifies sequential append mode

<file number> is an integer expression whosevalue is between one and the max-
imum number offiles specified in a MAXFILES = Statement.

<file number> is the number that is associated with the file for as long asit is
OPEN and is used by other I/O statementsto referto the file.

An OPEN must be executed before any I/O may be done to the file using any of
the following statements, or any statement or function requiring a file number:

PRINT #, PRINT # USING
INPUT #, LINE INPUT #

INPUTS, GET, PUT

Ex) 10 OPEN “CAS:DATA" FOR INPUT AS#1
20 LINE INPUT #1, A$
30 PRINT A$
40 CLOSE:END

156

OUT

OUT<port number >, < integer expression >
To send a byte to a machine output port.

<port number> and <integer expression> are in the range O to 255. <integer
expression> is the data (byte) to be transmitted.

Ex) 10 OUT&HAO, 7:OUT&HA1, 7
20 OUT&HAO, 8:OUT&HA1, 8
30 FORI=0TO 31
40 OUT&HAO, 6:OUT&HA1, |50 FOR J=1 TO SO:NEXT J
60 NEXT |

70 PRINT “hit the < CTRL > + < STOP > key”
80 END
run
hit the < CTRL > + < STOP > key

157

PAD

PAD (<n>)
Returns various status of touch pad. <n> can be in the range of O =7.
When O = 3 is specified, touch pad connected to joy stick port 1 is selected,
when 4 — 7, port 2.

When <n>=0 or 4, the status of touch padis returned, -1 when touched, O when
released.

When <n>-1 or 5, the X-coordinateis returned, when <n>=2 or 6, Y-coordinate is
returned.

When <n>=3 or 7, the status of switch on the pad is returned. -1 when being
pushed, O otherwise.

Note that coordinates are valid only when PAD(O) (or PAD (4)) is evaluated.
When PAD(O) is evaluated, PAD(5) and PAD(6) are both affected, and when
PAD(4), PAD(1) and PAD(2).

Ex) 10 SCREEN 2
20 IF PAD(O) = O THEN SW = 0
30 X = PAD(1):Y=PAD(2)
40 IF SW = O THEN PSET(X, Y) ELSE LINE -(X, Y)

50 SW=1
60 GOTO 20

158

PAINT

PAINT (X,Y)
STEP (x, v) [S Paint color >] [< color regarded as border >]

To fill in an arbitrary graphics figure of the specified fill color starting at <coordi-
nate specifier>. For the detail of the <coordinate specifier> see the description at
PUT SPRITE statement. PAINT does not allow <coordinate specifier> to be out of
the screen.

Note that PAINT must not have border for high resolution graphics, border can
be specified only in multicolor mode. In high resolution graphics mode, paint
coloris regarded as border color.

Ex) 10 SCREEN 2
20FORC=1TO 10
30 X1 = RND(1)+256
40 X2 = RND(1) +256
50 Y1 = RND(1) +192
60 Y2 = RND(1)+ 192
7O LINE (X1, O)-(X2, 191), 10
80 LINE (0, Y1)- (255, Y2), 10
90 NEXT C

100 FOR C=1 TO 20
110 X3 = RND(1)+256
120 Y3 = RND(1) *192
130 PAINT(X3, Y3), 10
140 NEXT C

150 GOTO 150

159

PDL

PDL (<n>)
Returns the value of a paddle. <n > can be in the range of 1 = 12.

When <n >is either 1, 3,5, 7, 9 or 11, the paddle connected to port 1 is used.
When 2, 4, 6, 8, 10 or 12, the paddle connected to port 2 is used.

Ex) PDL (2)

160

PEEK (|)

Returns the byte (decimal integer in the range O to 255) read from memory loca-
tion |. | mustbe in the range -32768 to 65535.
PEEKis the complementary function to the POKE statement.

Ex) 10 '*** MEMORY DUMP ***
20 INPUT “ADDRESS = ”; A
3O IFA <OTHE A= A+65536 !

40 FOR I= A TO A+64 STEP 8
50 PRINT *’ ”, RIGHT$("OOO"+HEX$ (I), 4);
60 PRINT USING “(#48#4)";l;
7OFORJ=|TO +7
80 PRINT RIGHT$("O"+HEXS(PEEK (J)), 2);

90 NEXT J:PRINT
100 NEXT I:END

run
ADDRESS =?-100

FF9C(65436)C3D702BF1B9898
FFA4(65444)C3D702BF1B9898
FFAC(65452)C3D702BF1B9898
FFB4(65460)C3D702BF1B9898
FFBC(65468)C3D702BF1B9898
FFC4(65476)C3D702BF1B9898
FFCC(65484)C3D702BF1B9898
FFD4(65492)C3D702BF1B9898
FFDC(65500)C3D702BF1B9898

OK

161

PLAY

PLAY < string exp. for voice 1> [, < string exp for voice 2 >[, < string exp
for voice 3>]]
To play music according to music macro language.

PLAY implements a concept similar to DRAW by embedding a ‘music macro
language” into a character string. <string exp for voice n> is a string expression
consisting of single character music commands. When a null string is specified,
the voice channel remains silent. The single character commands in PLAY are:

A to G with optional #, +, or-
;plays the indicated note in the current octave.
A number sign (#) or plus sign (+) afterwards indicates a sharp,
a minus sign (-) indicates a flat. The #, +, or — is not allowed
unless it corresponds to a black key on a piano. For example,
B# is an invalid note.

On ; Octave. Sets the current octave for the following notes.
There are 8 octaves, numbered 1 to 8. Each octave goes
from C to B. Octave 4 is the default octave.

Nn ; Plays note n. n may range from O to 96. n = O0 means
rest. This is an alternative way of selecting notes besides
specifying the octave (On) and the note name (A-G). (The
C of octave 4 is 36.)

Ln ; Sets the length of the following notes. The actual note
lengthis 1/n. n may range from 1 to 64. The following
table may help explain this:

Length Equivalent
L1 whole note
L2 half note
L3 one of a triplet of three half notes (1/3 of a 4

beat measure)
L4 quarter note
L5 one of a quintuplet (1/5 of a measure)
L6 one of a quarter note triplet

L64 sixty-forth note

162

Rn ;

Tn

Vn

Mn;

Sn

The length may also follow the note when you want to
change the length only for the note.
For example, A16 is equivalent to L16A. The defaultis 4.

Pause(rest). n may range from 1 to 64, and figures the
length of the pause in the same way as L(length). The
default is 4.

; (Dot or period) After a note, causes the note to be
played asa dotted note. Thatis, its length is multiplied
by 3/2. More than one dot may appear after the note,
and the lengthis adjusted accordingly. For example,
“A...” will play 27/8 as long, etc. Dots may also appear
after the pause{(P) to scale the pause length in the same
way.

; Tempo. Sets the number of quarter notes in a minute. n

may range from 32 to 255. The default is 120.
; Volume. Sets the volume of output. n may range from O

to 15. The defaultis 8.

Modulation. Sets period of envelope. n may range from 1

to 65535. The default is 255.
; Shape. Sets shape of envelope. n may range from 1 to

15. The default is 1. The pattern set by this command
are as follows:

163

01259 Neel

/1
/ 1

NBG 715 7 onenLLL LLL 17
\NNDNDNDNN DAN

8 ENENENENENE NE NEN
LDD LDD DEN

A ZS JN JN JN
10 7 OVO OM \

Vv Vv Vv V \
\ tn —

Ni
11 \1tt LL LIZLLE LL A JN JI12 VVW[LLL LI]EE13 /

7
A A

L£fs JA JN JN14 VN ENVv Vv Vv Vv

X < variable <;
; Executes specified string.

In all of these commands the n argument can be a constant like 12 or it can be
“= < variable > ; where variable is the name of a variable. The semicolon (;)

is required when you use a variable in this way, and when you use the X com-
mand. Otherwise, a semicolon is optional between commands.
Note that values specified with above commands will be reset to the system
default when beep soundis generated.

164

PLAY<n>

Returns the status of a music queue. <n> can be in the range of 0-3. if <n>=0, all
3 status are ORed and returned. If <n>iseither 1, 2 or 3, -1 is returned if the
queue is still in operation, i.e, still playing. O is reiurned otherwise
Note that immediate after the PLAY statement is issued, the PLAY function
returns -1 regardless to the actual status of the music queue.

Ex) 10 'BACH
20 PLAY “T240L6V12", “T240L2V9"
30 PLAY “R8O6GABO7DCCED”, “O4GOSGE”
40 PLAY “DGF#GDOGBGAB”
50 PLAY “O7CDEDCOGBGABG”, “O4ABOS5C”
60 PLAY “F#GADF#AO7COGBA”, “OSDF#D"
70 PLAY “BGA8O7DCCED", “GGC”
80 PLAY “DGF#GDOGBGAB”, “O4BOSED”
90 PLAY "EO7DCOGBAGDGF#G2", “CCHDG"
100 IF PLAY (0) THEN 100
110 PRINT “ * * * THEEND * + *”
run

* * * THEEND * * *

OK

165

POINT

POINT (X,Y)

Returns color of a specified pixel .

Ex) 10 SCREEN 2
20 OPEN “GRP:"FOR OUTPUT AS #1
3O FOR I= 1 TO 20
40 FORJ=1 TO8
50 PRESET(J+* 24, I+8)
60 C = INT (RND(1) *13}+2
70 COLOR C:PRINT#1, “9 ”

80 NEXT J,|90 COLOR 15
100 PRESET (100, 170)
110 PRINT #1, “Color No.”
120 FOR I= 1 TO 20
130FORJ=1TO8
140 K = POINT(J*24+4, I+x8+4)

150 PRESET(J*24+8, +8)
160 PRINT #1, USING “#4”; K

170 NEXT J, |

180 GOTO 180
RUN

166

oororroanoooNnnzo

wann

>>

>>

>>>>>>>>>>

>>>>

>>>

>.

oane

raVonrannnnrnre

>>>

>>>>

>>>>>>>>>

TONNO

rzoNnnomnoOonorr

>>>>>>>>>>>>>>>>>>>>

zoonnnrDaroNnnonNnnon

>>>>>>>>>

>>>>>>>>>>>

OorzannoronzsnonNRnennon

>

>>>>

>>>>>>>>>>>>>>

zoemer

onoronrrrvorom

>>>>>>>>>>>>>>>>>>>>>

Inn

TOSnzZNnNNNznorTors

>>>>>

>>>>>>>>>>>

>>

ooorvonnn

zo

nanssnnn

>>>

>>>>>>

>>>>>

>>>

Color No.

167

POKE

POKE < address of the memory >, < integer expression >
To write a byte into a memory location.

< address of the memory > is the address of the memory location to be POKEd
The < integer expression > is the data (byte) to be POKEd. It must be in the
range O to 255. And < address of the memory > must be in the range -32768 to
65535. If this value is negative, address of the memory location is computed as
subtracting from 65536. For example, -1 is same as the 65535 (=6553671).
Otherwise, an ‘Overflow’ error occurs.

Ex) 10 CLEAR 256, &HEOOO

20 IT POKES AT &HEO0O1 = EO10
30 FOR |= &HEOO1 TO &HEO10
40 POKEI, 256+| MOD 256
50 NEXT I

60 "IT PEEKS AT &HEOOO > EO20
70 FOR | = &HEOOO TO &HEO20 STEP 8
80 FOR J=1TO #7
90 PRINT USING & & ”; HEX$ (PEEK (J)):
100 NEXT J:PRINT
110 NEXT |

120 END

run
FF1 2 3 4 5 6 7

89 ABCDEF
103 FCO FF 3 FCO
FF3 FCO FF 3 FCO
FF3 FCO FF 3 FCO
OK

168

POS (!)

Returns the current cursor positon. The leftmost position is O. | is a dummy
argument.

Ex) 10 CLS
20 FORI=0TO 13
30 LOCATE |+2, :PRINT POS(X)
40 NEXT |

50 END
RUN

0
2

4
6

8
10

12
14

16
18

20
22

24
26

OK

169

PRESET

PRESET < coordinate specifier > [, < color >]

To reset the specified coordinate. For the detail of the < coordinate specifier >,
see the description at PUT SPRITE statement.

The only difference between PSET and PRESET is thatif no < color > is given in
PRESET statement, the background coloris selected.
Whena < color > argument is given, PRESET is identical to PSET.

Ex) 10 SCREEN 2
20 LINE (10, 10)-(245, 180), 15, BF

30 FOR I= O TO 700
40 X = INT(RND(1)+ 233}+11
50 Y =INT(RND(1)+ 168}+11
60 PRESET (X, Y)

70 NEXT I

80 GOTO 80
RUN

170

PRINT

PRINT[< list of expressions >]
To output data to the console.
If < list of expressions > is omitted, a blank line is printed.
If < list of expressions > is included, the values of the expressions are printed at
the console. An expression in the list may be a numeric and/or a string expres-
sion. (Strings must be enclosed in quotation marks.)

The position of each printed item is determined by the punctuation used to
separate the items in the list. BASIC divides the line into print zones of 14
spaces each. In the < list of expressions >, a comma causes the next value to
be printed at the beginning of the next zone. A semicolon causes the next value
to be printed immediately after the last value. Typing one or more spaces
between expressions has the same effect as typing a semicolon.

If a comma or a semicolon terminates the < list of expressions>, the next PRINT
statement begins printing on the same line, spacing accordingly. If the < list of
expressions > terminates without a comma or a semicolon, a carriage return is
printed at the end of the line. If the printed line is longer than the console
width, BASIC goes to the next physical line and continues printing.
Printed numbers are always followed by a space. Positive numbers are preceded
by a space. Negative numbers are preceded by a minus sign.

A question mark may be used in place of the word PRINT in a PRINT statement.

Ex) PRINT “AVT MSX"
AVT MSX
OK
? “COMPUTER !”
COMPUTER !

OK
10 PRINT “My Friend”
run
My Friend
oK

124

PRINT USING

PRINT USING < string expression > ; <list of expressions >
To print strings or numerics using a specified format.

< list of expressions > comprises the string expressions or numeric expressions
that are to be printed, separated by semicolons.

< string expression > is a string literal (or variable) comprising special formatting
characters. These formatting characters (see below) determine the field and the
formatof the printed strings or numbers.

When PRINT USING is used to print strings, one of three formatting characters
may be used to format the string field:

on
Specifies that only the first character in the given string is to be printed.

Example:
AS = “WORLD”
Ok
PRINT USING “!” ;A$
wW

Ok

"\ n spaces \”

Specifies that 2+n characters from the string are to be printed.

If the ’\" signs are typed with no spaces, two characters will be printed; with
one space three characters will be printed, and so on. If the string is longer than
the field, the extra characters are ignored. If the field is longer than the string,
the string will be left-justified in the field and padded with spaces on the right.

Example:
A$="WORLD"
Ok
PRINT USING "\ \" 1 A$
WORL
Ok

172

“gn
Specifies that the whole character in the given string is to be printed.

Example:
A$="You"
Ok
PRINT USING “I love & very much.”’;A$
I love you very much
Ok

When PRINT USING is used to print numbers, the following special characters
may be used to format the numeric field:

“gn
A number sign is used to represent each digit position. Digit positions are
always filled. If the number to be printed has fewer digits than positions speci-
fied, the number will be right-justified (preceded by spaces) in the field.

A decimal point may be inserted at any position in the field. If the format string
specifies that a digit is to precede the decimal point, the digit will always be
printed (as O if necessary). Numbers are rounded as necessary.

Example:
PRINT USING “###.H#"; 10.2, 2, 3.456, 24

10.20 200 346 0.24
Ok

je
A plus sign at the beginning or end of the format string will cause the sign of
the number (plus or minus) to be printed before or after the number.

Example:
PRINT USING “+###.4#4";1.25,-1.25

+1.25 1.25
Ok

PRINT USING “###.##+,1.25, 1.25
1.25+ 1.25-

Ok

173

A minus sign at the end of the formatfield will cause negative numbers to be
printed with a trailing minus sign.

Example:
PRINT USING v###.##-";1.25-1.25

1.25 1.25-
Ok

co
A double asterisk at the beginning of the format string causes leading spaces in

the numeric field to be filled with asterisks.

The *+* also specifies positions for two or more digits.

Example:
PRINT USING “xx #.##7;1.25, -1.25
+*1.25*-1.25

Ok

“87
A double dollar sign causes dollar sign to be printed to the immediate left of the
formatted number. The $$ specifies two more digit positions, one of which is
the dollar sign. The exponential format cannot be used with $$. Negative
numbers cannot be used unless the minus sign trails to the right.

Example:
PRINT USING “$ $ ###.H4";12.35, 12.35
$ 12.35-$12.35
Ok

PRINT USING “$ $ ###.##-;12.35,-12.35
$ 12.35 $12.35-
Ok

174

8”
The **$"at the beginning of a format string combines the effects of the above
two symbols. Leading spaces will be asterisk-filled and a dollar sign will be
printed before the number. **$ specifies three more digit positions, one of which
is the dollar sign.

Example:
PRINT USING **$#.4#;12.35
*$ 12.35
Ok

A comma thatis to the left of the decimal point in a formatting string causes a
comma to be printed to the left of every third digit to the left of the decimal
point. A comma thatis at the end of the formatstring is printed as part of the
string. A comma specifies another digit position. The comma has no effect if

used with the exponential format.

Example:
PRINT USING “’444#, #4"; 1234.5
1,234.50
Ok
PRINT USING “44H#.H#,"; 1234.5
1234.50,
Ok

Four carats may be placed after the digit position characters to specify exponen-
tial format. The four carats allow space for E+xx to be printed. Any decimal point
position may be specified.

175

The significant digits are left-justified, and the exponent is adjusted. Unless a
leading + or trailing + or

—
is specified, one digit position will be used to the left

of the decimal point to print a space or minus sign.

Example:
PRING USING “#8.#4’"""; 234.56

2.35E+02
Ok
PRINT USING “#84 "-12.34
-.12E+02
Ok
PRINT USING v+#.Hi"; 12.34, 12.34
+1.23E+01-1.23E+01
Ok

og"

If the number to be printed is larger than the specified numeric field, a percent
sign is printed in front of the number. Also, if rounding causes the number to
exceed the filed, a percent sign will be printed in front of the rounded number.

Example:
PRINT USING “##.##”; 123.45
%123.45
Ok
PRINT USING .##;.999
%1.00
Ok

176

If the number of digits specified exceed 24, an illegal function call’ error will
result.

Ex) 10 PRINT USING "84444"; 123456 |

20 PRINT USING “’#. #4##"; 12.345
30 PRINT USING “&###.#"; 1234.56
40 PRINT USING “$$44#4" ; 12345 |

50 PRINT USING “####, #"; 12345|60 PRINT USING “++ ##47; 12!
70 PRINT USING “#44 +"; 12345
80 PRINT USING “&44### * * * ="; 12345678904
90 END

run
123456
%12.3450
1234.6
$12345
12,345
ze 12
12345+

12346E+05
oK

177

PRINT #/PRINT # USING

PRINT # < file number >, [<expression> …...]

PRINT # < file number> USING <expression>; [<expression> …..]

To write data to the specified channel. (See PRINT/PRINT USING statements for
details.)

Ex) 1OCLS
20 A$ = "AVT MSX"
30 OPEN “CRT: FOR OUTPUT AS#1
40 LOCATE 10, 10
50 PRINT #1, A$
60 CLOSE
RUN

AVT MSX
OK

178

PUT SPRITE

PUT SPRITE <sprite plane number > [-<coordinates specifier >] [,< color >]
[: <pattern number >]
To set up sprite attributed.

<sprite plane number> may range from O to 31.

<coordinates specifier> always can come in one of two forms:

STEP (x offset, y offset) or
(absolute x, absolute y)

Thefirst form is a point relative to the most recent point referenced. The second
form is more common and directly refers to a point without regard to the last
point referenced. Examples are:

(10, 10) absolute form
STEP (10, O) offset 10inxandOiny
(0,0) origin

Note that when Basic scans coordinate values it will allow them to be beyond
the edge of the screen, however values outside the integer range(-32768 to
32767) will cause an overflow error.
And the values outside of the screen will be substituted with the nearest possi
ble value. For example, O for any negative coor dinate specification.

Note that (0,0)is always the upper left hand corner. It may seem strange to start
numbering y at the top, so the bottom left corner is (0,191) in both high:
resolution and medium resolution, but this is the standard.

Above description can be applied wherever graphic coordinateis used.

X coordinate <X> may range from -32 to 255. Y coordinates <y> may range from
-32 to 191. If 208 (&HDO) is given to <y>, all sprite planes behind disappears
until a value other than 208 is given to that plane. If 209 (&HD1) is specified to
<y>, then that sprite disappears from the screen.

179

When a field is omitted, the current value is used. At start up, color defaults to
the current foreground color.

<pattern number> specifies the pattern of sprite, and must be less than 256
when size of sprites is O or 1, and must be less than 64 when size of sprites is
2 or 3. <pattern number> defauits to the <sprite plane number>. (See also SCREEN
statement and SPRITE$ variable)

Ex) 10 DEFINT A-Z
20 DIM X(10), Y(10)
30 SCREEN 2, 3:COLOR, 1, 1:CLS: I=RND (- TIME)

40 FOR I=1 TO 10:X(1)=96 Y(IJ=|+15:NEXT

50 FOR I=0 TO 31:READ A$:B$=B$+CHRS$(VAL("&H"+A$)):NEXT
60 SPRITE$(0)=B$
70 FOR I=1 TO 10
80 PUT SPRITE |, (X(I), Y(I), +4, O

90 NEXT

100 FOR I=1 TO 10
110 X(IJ=(X(IJHRND (1) * 21-10)) MOD 256
120 Y(IJ=(Y(I+(RND (1) + 21-10))MOD 192
130 NEXT

140 GOTO 70
150 DATA OC, 06, 62, F2, FA, DD, CF, C7
160 DATA FF, 7F, 3F, 1B, 37, 3E, 1C, 00
170 DATA 30, 30, 46, 4F, 5F, BB, FB, F3, E3
180 DATA FF, FE, FC, D8, EC, 7C, 38, OO

180

READ

READ <list of variables >
To read values from a DATA statement and assign them to variables.

A READ statement must always be used in conjunction with a DATAstatement.
READ statements assign variables to DATA statement values on a one-to one
basis. READ statement variables may be numeric or string, and the values read
must agree with the variable types specified. If they do not agree, a ‘Syntax
error’ will result.

A single READ statement may access one or more DATA statements (they will
be accessed in order), or several READ statements may access the same DATA
statement If the number of variables in <list of variables> exceeds the number of
elements in the DATA statement(s), an “Out of DATA’ error will result. If the
number of variables specified is fewer than the number of elements in the
DATA statement(s), subsequent READ statements will begin reading data at the
first unread element. If there are no subsequent READ statements, the extra
datais ignored.

To reread DATA statements from the start, use the RESTORE statement.

Ex) 10FORI=1 TO 3
20 READ A$, B, C

30 PRINT TAB(3);A$
40 D=B+C

50 PRINT TAB(7) USING “’4#####4;B;C;D
60 NEXT |

70 DATA AVT”, 50, 60
80 DATA “MSX”, 30, 40
90 DATA “COMPUTER”, 1, 2
RUN

AVT
50 60 110

MSX
30 40 70

COMPUTER
1 2 3

OK

181

REM[<remark>]

To allow explanatory remarksto be inserted in a program.
REM statements are not executed but are output exactly as entered when the
program is listed.

REM statements may be branched into (from a GOTO or GOSUB statement),
and execution will continue with the first executable statement after the REM
statement.

Remarks may be added to the end of a line by preceding the remark with a
single quotation mark instead of :REM.

Do not use this in a DATA statement asit would be considered legal data.

Ex) 10 REM statement of read, data
20 FOR I=1 TO 3
30 READ A$
40 PRINT A$; SPC(2)
50 NEXT

60 END
70 DATA avt, msx, computer
run
avt msx computer
OK

182

RENUM

RENUM [<new number >] [, <old number > } [, <increment >]

To renumber program lines.

< new number > is thefirst line number to be used in the new sequence. The
default is 10. <old number > is the line in the current program where renum-
bering is to begin. The default is the first line of the program. <increment > is
the incrementto be used in the new sequence. The default is 10.

RENUM also changes all line number references following GOTO, GOSUB,
THEN, ELSE, ON-GOTO, ON-GOSUB and ERL statements to reflect the new
line numbers. If a nonexistent line number appears after one of these state-
ment, the error message ‘Undefined line nnnn in mmmm’ is printed. The incor-
rect line number reference (nnnn) is not changed by RENUM, but line number
mmmm may be changed.

NOTE: RENUM cannot be used to change the order of program lines (for exam-
ple, RENUM 15, 30 when the program has three lines numbered 10, 20 and
30) or to create line numbers greater than 65529. An ’illegal function call’ error
will result.

Ex) 10 REM RENUM
20°
25°
55’
70°
RUN

OK
RENUM 20, 10,5
OK

list
20 REM RENUM
25°
30"
35’
40°

183

RESTORE

RESTORE[<line number >]
To allow DATA statements to be reread from a specified line.

After a RESTORE statement is executed, the next READ statement accesses the
first item in the first DATA statement in the program. If (line number) is speci-
fied, the next READ statement accesses the first item in the specified DATA
statement. If a nonexistent line number is specified, an ‘Undefined line number’
error will result.

Ex) 10 RESTORE:READ A, B, C, D,E, FG
20 PRINT A, D, F

30 RESTORE 100
40 READ A$, B$, C$, D$, E$, F$, G$
50 PRINT A$, B$; C$, D$; E$‚ F$; G$
60 END

70 DATA 1,4, 6
80 DATA 2,5, 3

90 DATA 7,8, 9, 0
100 DATA D, P, C-
110 DATA 2, 0,0
120 DATA A, B, C, D,E, F, G

184

| RESUME

[o]
NEXT
<line number >

RESUME

To continue program execution after an error recovery procedure has been
performed.

Any one of the four formats shown above may be used, depending upon where
execution is to resume:
RESUME or RESUME O

Execution resumes at the statement which caused the error.

RESUME NEXT

Execution resumes at the statement immediately following the one which
caused the error.

RESUME <line number>

Execution resumes at <line number>
A RESUME statement that is not in an error trap subroutine causes a ‘RESUME
without’ error.

Ex) 10 ON ERROR GOTO 100
20 INPUT “X="; X

30 PRINT SOR(X);
40 IF F=1 THEN PRINT "iELSE PRINT

50 F=0:GOTO 20
100 X=- X:F=1

110 RESUME

185

RIGHT $

RIGHTS (<X$>, <>)
Returns the rightmost | characters of string X$. If IELEN (X$), return X$. If =O, a
null string (length zero) is returned.

Ex) 10CLS
20 INPUT “DATA="; A$
3O L=LEN (A$)
40 FOR I=1 TOL
50 B$=RIGHTS$(A$, |}
60 B$=RIGHT$(SPACE$(50)+B$, L)

70 PRINT B$

80 NEXT

90 END
RUN

DATA=? AVT

T
VT

AVT

186

RND

RND [(<X>)]
Returns a random number between O and 1. The same sequence of random
number is generated each time the program is RUN. If X < O, the random gen-
erator is reseeded for any given X. X=O repeats the last number generated. X >
O generates the next random number in the sequence.

Ex) 10FORI=1TO05
20 A=RND(1)
30 PRINT A;TAB(18);INT(A +10)
40 NEXT |

50 END
RUN

.59521943994623

.10658628050158

.76597651772823

.57756392935958
-73474759503023

San

an

RUN

RUN [< line number >]
To execute a program.
If < line number > is specified, execution begins on that line.

Otherwise, execution begins at the lowest line number.

Ex) 10 PRINT “LOVE”
20 PRINT “COMPUTER”
RUN 20
COMPUTER
OK

187

SAVE

SAVE “’[<device descripter>] <filename > ”

To save a BASIC program file to the device. Control +Z]|is treated asend-of-file.

Ex) SAVE “CAS:SAMPLE"
OK

188

| SCREEN

SCREEN [<mode>] [‚<sprite size >] [,<key click switch >]
L<cassette baud rate> } [, <printer option >]

To assign the screen mode, sprite size, key click, cassette baud rate and printer
option.

< mode > should be set to O to select 40x24 text mode, 1 to select 32x24 text
mode, 2 to select high resolution mode, 3 to select multi color (low-resolution
mode).

0:40x24 text mode
1:32x24 text mode
2: high resolution mode
3: multi color mode

< sprite size > determines the size of sprite. Should be set to O to select 8x8
unmagnified sprites, 1 to select 8x8 magnified sprites, 2 to select 16x16 unmag-
nified sprites, 3 to select 16x16magnified sprites. NOTE: If < sprite size > is
specified, the contents of SPRITE$ will be cleared.

0:8x8 unmagnified
1:8x8 magnified
2: 16x16 unmagnified
3: 1616 magnified

< key click switch > determines whether to enable or disable the key click.
Should be set to O to disable it.

O:disable the key click
non zero:enable the key click

189

Note that in text mode, all graphics statements except ‘'PUT SPRITE’ generate an
“Illegal function call’ error. Note also that the mode is forced to text mode when
an INPUT" statementis encountered or BASIC returns to command level.
< cassette baud rate > determines that default baud rate for succeeding write
operation. 1 for 1200 baud, and 2 for 2400 baud. Baud rate can also be deter-
mined using CSAVE command with baud rate option.

Note that when reading cassette, baud rate is automatically determined, so the
user don't have to know in what baud rate the cassette is written. < printer
option > determines if the printer in operations is 'MSX printer’ (which has ‘gra-
phics symbol or not. Should be non-0 if the printer does not have such capab-
ility. In this case, graphics symbols are converted to spaces.

Ex) SCREEN 1,2

190

SGN (X)

Returns 1 (for X > O0), O (for X=0), -1 (for X < 0).

Ex) 10 INPUT “SIGN”;|20 J=SGN(I)
30 J=J+2
40 ON J GOSUB 90, 100, 110
50 PRINT “THIS IS *;

60 PRINT A$
70 PRINT
80 GOTO 10
90 A$="MINUS"":RETURN
100 A$="ZERO":RETURN
110 A$="PLUS":RETURN
RUN

SIGN? 7
THIS IS PLUS

SIGN?0O
THIS IS ZERO

SIGN ?-1
THIS IS MINUS

SIGN?

191

SIN (X)

Returns the sine of X in radians. SIN(X) is calculated to double precision.

Ex) 10FOR I=1 TO 3
20 A=SIN(l}

30 PRINT I;A
40 NEXT

50 END

RUN
1 .84147098480792
2 .90929742682566
3 .14112000805978

SOUND

SOUND <register of PSG>, <DATA>
To write value directly to the <register of PSG>.

Ex) SOUND 7,254

192

SPACE $

SPACE $ (X)

Returns the string of spaces of length X. The expression X discards the frac-
tional portion and must be range O to 255.

Ex) 10 OPEN "CRT: FOR OUTPUT AS #1
20 CLS: FOR I=0 TO 10
30 S=INT(RND(1) +17)
40 PRINT #1, +”;
50 PRINT #1, SPACES(S);" +”;
60 PRINT #1, SPACE$(17-S); “SPACE”; S
70 NEXT

80 CLOSE:END
RUN
: 5 SPACE 10
5 SPACE 1

* * SPACE 13
5 * SPACE 9
* % SPACE 12
> * SPACE 3
: f SPACE 6
5 + SPACE 16
: : SPACE 10
® 8 SPACE 7
5 E SPACE 14
OK

1983

SPC(|)
Prints | blanks on the screen. SPC may only be used with PRINT and LPRINT
statements. | must be in the range O to 255.

Ex) 10 CLS:FOR|=0 TO 10
20 S=INT(RND(1) x 17)
30 PRINT “+”;
40 PRINT SPCIS); © +";
50 PRINT SPC(17-S); "SPACE";S
60 NEXT:END

RUN
7 ë SPACE 10
> SPACE 1

* * SPACE 13
& x SPACE 9
® ® SPACE 12

w SPACE 3
= y SPACE 6
5 * SPACE 16
* Ä SPACE 10
Ee f SPACE 7
N 5 SPACE 14
OK

194

SPRITE ON/OFF/STOP

To activate/deactivate trapping of sprite in a BASIC program.
A SPRITE ON statement must be executed to activate trapping of sprite. After
SPRITE ON statement, if a line number is specified in the ON SPRITE GOSUB
statement then every time BASIC starts a new statement it will check to see if

the sprites coincide.
If so it will perform a GOSUB to the line number specified in the ON SPRITE
GOSUB statement.
If a SPRITE OFF statement has been executed, no trapping takes place and the
event is not remembered even ifit doestake place.
If a SPRITE STOP statement has been executed, no trapping will take place, but
if the sprites coincide this is remembered so an immediate trap will take place
when SPRITE ON is executed.

Ex) SPRITE ON

195

SPRITE $

SPRITE $ (< pattern number >)

The pattern of sprite.

< pattern number > must be less than 256 when size of sprites is O or 1, less
than 64 when size of sprites is 2 or 3.

The length of this variable is fixed to 32 (bytes). So, if assign the string that is
shorter than 32 character, the chr$(0)'s are added.

Ex) 10 SCREEN 1,3
20 PRINT “++ MOUSE +++
30 FOR +1 TO 16
40 READ D$
50 A$=AS+CHRS(VAL(""&B”"+LEFTS(D$, 8)))

60 B$=B$+CHRS(VAL("&B”+RIGHT$(D$, 8)
70 NEXT I

80 SPRITE$(0)=A$+B$
90 PUT SPRITE O, (50, 70), 15, 0
100 PUT SPRITE 1, (90, 70), 14, O

110 PUT SPRITE 2, (130, 70), 1,0
120 PUT SPRITE 3, (170, 70), 13, O0

130 PRINT “PUT SPRITE O, (0, 208)"
140 DATA O0000000000011110
150 DATA 0000100000101001
160 DATA 0001011111101101
170 DATA 0000100000101001
180 DATA 0011111011111111
190 DATA 0001111111111000
200 DATA O0000001111111000
210 DATA 0000011111110000
220 DATA 0000001111100010
230 DATA 0000000111100100
240 DATA 1100001111100100
250 DATA 0011111111110010
260 DATA 0000001111110010
270 DATA 0000001111110010
280 DATA O0000000111111100
290 DATA O0000011111110000

196

SOR (X)

Returns the square root of X. X must be >= 0

Ex) 10 INPUT "="I
20 PRINT "SOR(ij=";
30 PRINT SOR!)
40 PRINT “1 * .5=";
50 PRINT | * 5
60 PRINT
70 GOTO 10
RUN
I=? 23
SOR(i)=4.7958315233127

1 1.5=4.7958315233124

+755
SOR(i)=7.4161984870955
1°.5=7.4161984870947

I=?

197

STICK

STICK(<n>)
Returns the direction of a joy-stick. < n > can be in the range of 0-2. If <n >=0,
the cursor key is used as a joy-stick.lf <n > is either 1 or 2, the joy-stick con-
nected to proper port is used. When neutral, O is returned. Otherwise, value
corresponding to direction is returned.

74 —— 0 ——B3

Ex) 10 PRINT STICK (0);

20 PRINT STICK (1);
30 PRINT STICK (2)

40 GOTO 10
run

1 0 O0

1 0 O0

0 0 O0

7 0 O0

7 0 O0

7 0 O0

0 0 O0

0 0 O0

0 0 O0

5 0 O0

5 0 O0

198

STOP

To terminate program execution and return to command level.
STOP statement may be used anywhere in a program to terminate execution.
When a STOP statement is encountered, the following message is printed:

Break in nnn (nnn is a line number)

Unlike the END statement, the STOP statement does not close files.
Execution is resumed by issuing a CONT command.

Ex) 10 INPUT"input no. (1 OR 2)°;N
20 IF N=1 THEN PRINT "END":END
30 IF N=2 THEN PRINT “STOP”:STOP
40 GOTO 10
run
input no. (1 OR 2)? 2
STOP
Break in 30
OK

STOP ON/OFF/STOP

To activate/deactivate trapping of a control:STOP. A STOP ON statement must
be executed to activate trapping of a control+STOP. After STOP ON statement, if

a line number is specified in the ON STOP GOSUB statement then every time
BASIC starts a new statement it will check to’see if a control:STOP was
pressed. If so, it will perform a GOSUB to the line number specified in the ON
STOP GOSUB statement.
If a STOP OFF statement has been executed, no trapping takes place and the
event is not remembered evenif it does take place.
If a STOP STOP statement has been executed, no trapping will take place, but if

a control+STOP is pressed this is remembered so an immediate trap will take
place when STOP ONis executed.

Ex) STOP ON

199

STRIG

STRIG (<n>)
Returns the status of a trigger button of a joy-stick. < n > can be in the range of
0-4. If <n> =O the space bar is used for a trigger button. If <n>is either 1 or
3, the trigger of a joy-stick 1 is used. When <nn > is either 2 or 4, joy-stick 2. O

is returned if the triggeris not being pressed, —1 is returned otherwise.

Ex) 10 PRINT STRIG (0);

20 PRINT STRIG (1);

30 PRINT STRIG (2)

40 GOTO 10
run
0 0 O0

0 0 O0

+1 -1 0
+1 0 o
0: =1 0

4 0 0
+1 À 0
0 0 0
0 0 O0

200

STRIG ON/OFF/STOP

STRIG (< n >) ON/OFF/STOP
To activate/deactivate trapping of trigger buttons of joy sticks in a BASIC

program.

<n> can be in the range of 0-4. If <n >=0, the space bar is used for a trigger
button. If <n > is either 1 or 3, the trigger of a joy-stick 1 is used. When <n>
is either 2 or 4, joy-stick 2.

A STRIG (n) ON statement must be executed to activate trapping of trigger but-
‘ton. After STRIG (n) ON statement, if a line number is specified in the ON
STRIG GOSUB statement then every time BASIC starts a new statement it will
check to seeif the trigger button was pressed. If so it will perform a GOSUB to
the line number specified in the ON STRIG GOSUB statement.
If a STRIG(n) OFF statement has been executed, no trapping takes place and the
eventis not remembered even if it does take place.
If a STRIG(n) STOP statement has been executed, no trapping will take place,
butif the trigger button is pressed this is remembered so an immediate trap will
take place when STRIG(n) ONis executed.

Ex) STRIG (0) ON

STR $ (X)

Returns a string representation of the value of X.

Ex) 10 A=1957:B=3: C=6
20 PRINT STR$(A}+”, ; STR$(B}+ *,"+STR$(C)
30 END

run
1957, 3, 6

OK

201

STRING $

STRING $ (<I>,<Xx$>)
Returns a string of length | whose characters all have ASCII code J or the first
characterof the string X$.

Ex) 10CLS
20 FOR I=3 TO 13
30 L=INT(RND(1) +20)
40 LOCATE 3, |

50 PRINT USING #4"; L

60 LOCATE 6,|70 PRINT STRINGS(L, x"")
80 NEXT

90 END
run

11 KK215 xx11 nan14 “nana3 xx718 XXX AN KKK KKK KKK AAAK12 KKK9 xk16 KAAK KAKKEN
OK

202

SWAP

SWAP < variable >, <variable >
To exchange the value of two variables.

Any type of variable may be SWAPed (integer, single precision, double precision,
string), but the two variable must be of the same type or a ‘Type mismatch’
error results.

Ex) 10 FOR I=0TO3
20 X(IJ=INT(RND(1)*99)
30 Y(IJ=INT(RND(1)* 99)
40 NEXT:GOSUB 110
50 PRINT

60 FOR I=0 TO 3
70 SWAP X(|), Y(I)

80 NEXT

90 GOSUB 110
100 END

110 PRINT ©
1 X(I) Y(I)”

120 PRINT
130 FOR I=0 TO 3
140 PRINT USING # #8 H8IX(I);Y(I)
150 NEXT:RETURN

run
LX) YW)

o 58 10
1 75 57
2 72 18
3 36 94

LX) YW)

0 10 58
1 57 75
2 18 72
3 94 36

OK

203

TAB (|)
|

Spaces to position | on the console. If the current print position is already
beyond space I, TAB does nothing. Space O is the leftmost position, and the
rightmost position is the width minus one. | must be in the range O to 255. TAB
may only be used with PRINT and LPRINT statements.

Ex) 10 PRINT
20 PRINT ’*”
30 PRINT “

40 PRINT +" TAB (9) x”
50 PRINT +"; TAB (9); +"
60 END
OK
run

TAB (9) “+”

26%

*

OK

204

TAN (X)
Returns the tangent of X in radians. TAN (X)is calculated to double precision. If

TAN overflows, an 'Overflow’ error will occur.

Ex) 10 FOR I=3.14 TO 6.28
20 A=TAN([*3.14)
30 PRINT A
40 NEXT

run
-46447027876367
.46253546743286
.46060350459682
.45867437419176

TIME

The system internal timer. TIME is automatically incremented by 1 everytime
VDP generates interrupt (60 times per second), thus, when an interrupt is dis-
abled (for example, when manipulating cassette), it retains the old value.

Ex) 20CLS
30 LOCATE 10, 8
40 PRINT "start !”

50 TIME=0
60 LOCATE 10, 10
70 T-TIME
80 H=INT(T/3600)
90 M=INT(T/60)
100 S=T MOD 60
110 PRINT USING “## : #4 HH, H,MIS
120 GOTO 60
run

start !

0:3'45

205

TRON/TROFF

To trace the execution of program statements.
As an aid in debugging, the TRON statement (executed in either the direct or
indirect mode) enables a trace flag that prints each line number of the program
as is executed. The numbers appear enclosed in square brackets. The trace flag
is disabled with the TROFF statement (or when a NEW command is executed).

Ex) 10 PRINT vavt ”;

20 PRINT “msx ”;

30 PRINT “computer”
run
avt msx computer
OK

tron
OK

run
[10] avt [20] msx [30] computer
OK
troff
oK
run
avt msx computer

206

USR

USR [<digit>] (X)

Calls the user's assembly language subroutine with the argument X. < digit > is
in the range O to 9 and corresponds to the digit supplied with the DEFUSR
statement for that routine.If < digit > is omitted, USRO is assumed.

Ex) 10 CLEAR 200, &HEFFF
20 AD=&HF000
30 FOR I=AD TO AD+9
40 READ A$:A=VAL ("&h”+A$)
50 POKE |, A

60 NEXT I

70 DEF USR1=&HF000
80 INPUT A%

90 PRINT “A%=";A%
100 I=ZUSR1(A%)

110 PRINT “i=";l
120 DATA 23, 23, 4e, 23, 46, 03, 27, 2b, 71, C9

run
21
A%=1

=2
OK
run
29
A%=9
i=10
OK
run
299
A%=9
i=100
OK

207

VAL (X$)

Returns the numerical value of the string X$. The VAL function also strips lead-
ing bianks, tabs, and linefeeds from the argument string.

Ex) 10 FOR I=0 TO 30 STEP 5
20 PRINT "HEX"; HEXS(I); TAB (6)

“IS ";VAL(UV&H+HEXS(I)

30 NEXT |I

40 END
RUN
HEXO IS O

HEX5 IS 5

HEXA IS 10
HEXF IS 15
HEX14 IS 20
HEX19 IS 25
HEXIE IS 30

208

VARPTR

VARPTR (< variable name >)
VARPTR (#< file number >)

Returns the address of the first byte of data identified with < variable name >
A value must be assigned to < variable name > prior to execution of VARPTR
Otherwise, an ’lllegal function call’ error results. Any type variable name may be
used (numeric, string, array), and the address returned will be an integer in the
range -32768 to 32767. If a negative address is returned, add it to 65536 to
obtain the actual address.
VARPTR is usually used to obtain the address of a variable or array so it may be
passed to an machine language subroutine.
A function call of the form VARPTR (A(O)) is usually specified when passing an
array, so that the lowest-address element of the array is returned.

All simple variables should be assigned before calling VARPTR for an array
because the address of the arrays change whenever a new simple variable is
assigned. If # < file number > is specified, VARPTR returns the starting address
of thefile control block.

Ex) PRINT HEXS (VARPTR(A))

VDP |

VDP(<n>)
If <n> is in the range of 0-7, specifies the current value of VDP's write only
register. If <n > is 8, specifies the status register of VDP. VDP (8)is read only.

Ex) A=VDP (8)

209

VPEEK

VPEEK (< address of VRAM>)
Returns a value of VRAM specified. < address of VRAM > can be in the range of
0-16383.

Ex) A%=VPEEK(1)

VPOKE

VPOKE < address of VRAM>, < value to be written>
To poke a value to specified location of VRAM. < address of VRAM > can be in

the range of 0-16383. < value to be written > should be a byte value.

Ex) VPOKE1% &HFF

210

WAIT

WAIT <port number> ‚L,[J]
To suspend program execution while monitoring the status of a machine Input
port.

The WAIT statement causes execution to be suspended until a specified
machine input port develops a specified bit pattern.
The data read at the port is exclusive OR'ed with the integer expression J, and
then AND'ed with integer expression |. If the result is zero, BASIC loops back
and reads the data at the port again. If the result is non-zero, execution con-
tinues with the next statement. If J is omitted, it is assumed to be zero.

Ex) WAIT 1, &H 22, &H 22

WIDTH

To set the width of display during text mode. Legal value is 1-40 in 40x24 text
mode, 1-32 in 32x24 text mode.

Ex) 10 FOR I=5TO 30 STEP 5
20 WIDTH |

30 PRINT STRINGS(I, ")+"WIDTH";I
40 FOR J=0 TO SOO:NEXT J
50 NEXT|RUN xkWIDTHS

xk KKK KAK
WIDTH10O

AK KKK ARN KK AKA K

WIDTH15
KEK KK KAAK AKK AKK KKAK
WIDTH20O

HAAK KAK KNAKENWIDTH25
AMAR KAK AKK KN KNA NKKWIDTH30

211

SAMPLE PROGRAMS

Addition

10 A=3

20 B=5
30 C=A+B

40 PRINT C

50 END

The area of circle

10 INPUT R

20 M=3.14159*xR+R
30 PRINT M

40 END

Drawing of box

10 SCREEN 2

20 LINE (0,0)-(140, 100), 1, B

30 LINE (100, 80)-(255, 191), 2,BF
40 GO TO 40

215

Subtraction from 100 to 1 step 3

10
20
30
40

FOR J=100 TO 1 STEP-3
PRINT J;
NEXT J
END

Multiplication table

10
20
30
40
50
60
70

FOR K=1TO9
FOR J=1TO09
PRINT JxK;
NEXT J
PRINT

NEXTK
END

Sounds of helicopter

10
20
30
40
50

FOR I=0 TO 13
READ A:SOUND I, A

NEXT

DATA20, 0, 30, 0,0, 9, 0
DATA 48, 16,4, 6, 100, 2, 12

216

Array

10
20
30

50
60
70
80

DIM x(10)
FOR J=1 TO 10
XI) =Jx2
NEXT J
FOR K=1 TO 10
PRINT X(K)

NEXT K

END

Drawing of circle

10
20
30
40
50
60
70
80
90

100
110
120
130

SCREEN 2

P=3.14159
FOR T=0 TO 2+*P STEP 0.1
X=30*COS (T)+40
Y=30 * SIN (T)+48

LINE (X, Y)-(40, 48), 11

X1=X+80;Y1=Y
PSET (X1, Y1), 8
NEXT T

CIRCLE (40, 144), 30, 3
CIRCLE (120, 144), 30, 8
PAINT (40, 144), 3
GO TO 130

217

LEFT$, RIGHT$

10
20
30
40
50

MID$

10
20
30
40
50
60

READ A$
PRINT LEFTS (A$, 7)

PRINT RIGHTS (A$, 4)
DATA "ABCDEFGHIJKLMNOPORSTUVWXYZ”
END

READ A$, B$

PRINT MID$ (A$, 8, 7)

AS=LEFT$ (A$, 7) + B$

PRINT A$
DATA “I AM A TEACHER”, “PIONEER”
END

STRING$ (LEFT$, RIGHT$, MID$)

10
20
30
40
50
60

A$="THREE!&#$/STRING!&#$/FUNCTIONS”
L$=LEFT$ (A$, 5)

M$=MID$ (A$, 11, 6)

RS=RIGHTS (A$, 9)

PRINT L$; M$; R$
END

218

DRAW

10 SCREEN 2

20 PSET (220, 191), 10
30 DRAW “U190”
40 FOR I=189 TO 1 STEP-4

50 A$="L"+STRS(I}+"D"+STRS(|-1+"R"+STRS(1-2}H+"U"+STRS(1 -3)

60 DRAW XA$;”
70 NEXT I

80 GO TO 80

219

PLAY

10 REM BACH

20 PLAY “T240L6V12", “T240L2V9"
30 PLAY “R8O6GABO7DCCED”, "O4GOSGE"
40 PLAY “DGF#GDOGBGAB”, “O4BO5EO4E”

50 PLAY “O7CDEDCOGBGABG”, "O4ABO5C”
60 PLAY “F#GADF#AO7COGBA”, “"O5DF#D"

70 PLAY "BGA8O7DCCED”, “CGC”

80 PLAY “DGF#GDOGBGAB”, “O4BOSED”
90 PLAY "EO7DCOGBAGDGF#G2", “CC#DG”

100 IF PLAY (0) THEN 100
110 PRINT ‘x** THE END *++*”'

STRING$

10 CLS

20 FOR I=3 TO 13
30 L=INT (RND (1) +20)
40 LOCATE 3,|50 PRINT USING ##";L
60 LOCATE 6, |

70 PRINT STRING (L, “*"”)

80 NEXT

90 END

220

Plottine sine curve

10
20
30
40
50
60

REM A SINE WAVE

FOR T=0TO 12.5 STEP .25
A=INT (16+15*SIN(T))
PRINT TAB(A); "SINE"

NEXTT
END

Truth table : (AUB)N (TC)

10
20
30
40
50
60
70
80
90

100

PRINT ” A B C X”

FOR |=1 TO 8
READ A, B, C

X=(A OR B) AND (NOT C)

PRINT

PRINT USING “#4”; A, B, C, X

NEXT I

END
DATA 1,1, 1,1, 1,0, 1,0, 1,1, 0,0
DATA 0, 1,1,0, 1,0, 0,0, 1,0, 0,0

221

The area and perimeter of a triangle

10
20
30
35
40
50
60
70
80
90

PRINT “THE LENGTHS OF THE ”;

PRINT “SIZES OF A"
INPUT “TRIANGLE “;A,B, C

PRINT

P=A+B+C

PRINT “PERIMETER=";P

P-0.5xP
S=SOR (P* (P-A)»(P-B)(P-C))
PRINT “AREA:=";S
END

Calculation of 7L (Monte-Carlo Method)

10
20
30
40
50
60
70
80
90

100
110
120

FOR B=1TO08
FOR A=1 TO 100
X=RND (1)

Y=RND (1)

ZX Xa
IF Z< 1 THEN S=S+1
N=N+1

P=4+S/N
NEXT A
PRINTP
NEXTB
END

222

Arithmetic mean

10
20
30

50
60
70
80
90

100
110
120
130
140

M=0:N=0
READ A
IF A=-999 THEN 70
N=N+1

M=M+A
GO TO 20
M=M/N
PRINT “NUMBER OF"
PRINT “SAMPLES=";N
PRINT

PRINT “MEAN”; TAB (19);
PRINT =" ;M
DATA 12, 25, 15, 0,-999
END

223

Combination

10
20
30

50
60
70
80
90

100
110
120
130
140
150
160
170
180
190

REM COMBINATION
FOR N=0 TO 10
PRINT N; “I”

FOR R=OTON
F=1

FORK=1 TON
F=FxK
NEXTK
FOR K=1 TOR
F=F/K
NEXT K

FOR K=1 TO N-R
F=F/K
NEXT K

PRINT F;
NEXT R

PRINT

NEXT N

END

224

Expectation

10
20
30
40
50
60
70
80
90

100
110
120
130

DIM X(12), P(12)
s=0
FOR I=1 TO 11

READ X(l), P(I)

S=S+X(|)*P{I)

NEXT I

xX1=S/4.5E+06
PRINT “EXPECTATION=";X1; “8”
END

DATA 10000000, 2, 100000, 88, 5000000, 3
DATA 4000, 132, 1000000, 4, 10000, 196
DATA 500000, 45, 100000, 90, 10000, 900
DATA 1000, 9000, 100, 900000

225

Conversion (from base ten to another base)

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

DIM A(15)
INPUT “THE NEW BASE?";B
PRINT "FIRST AND LAST ”;

PRINT “NUMBER TO”
INPUT “CONVERT?"; F‚L

FOR I=F TOL
PRINT

GOSUB 160
REM PRINT A TABLE ENTRY

PRINT |; TAB (7);

FOR D=J TO 1 STEP -1

PRINT AD);
NEXT D

NEXT |

END
1=l
J=1
O=INT (11/B)
R=l1-0+*B
11=0
A(JJER

JH
IF Q > =B THEN 180
A(JFQ
RETURN

226

Graphic (1)

10 SCREEN 2
20 Y1=30:Y2=0:PI=3.141592#
30 PSET (190, 0), 11

40 FOR T=0 TO 6+*PI STEP PI/25
50 X=60+*COS(T):GX=126+X

60 Y1=Y1+1:Y2=Y2+1

70 LINE{GX, Y2), 11

80 LINE (126, Y1){GX, Y2), 11

90 NEXT T

100 GO TO 100

Graphic (2)

10 SCREEN 2

20 =-540 : E=-270 : C=2 : GOSUB 100
30 B=-270: E=-180: C =13 : GOSUB 180
40 B=-180 : E=90 : C=14 : GOSUB 100
50 B=90 : E=270 : C=6 : GOSUB 100
60 B=270 : E =450 : C=10 : GOSUB 100
70 B=450 : E=540 : C=15 : GOSUB 100
80 GOTO 80
100 FOR I=BTOE STEP 9
110 V1=l+xP/180 : V2=|*P/540
120 X=COS(V2)*120x(1+540)/1000+124
130 D=256-X
140 Y=COS(V2)*45+96+SIN(V1)+45
150 LINE (124, 96}(D,Y), C

160 LINE (132, 96}(X,Y), C

170 NEXT

180 RETURN

227

Graphic (3)

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210

SCREEN 2
SC=1.16:CX=128:CY=96

C=COS(.1):S=SIN(.1)
FOR T=0 TO 6.3 STEP 0.05
R=88*COS(2+*T)
COLOR 11

X=CX+SC+R+COS(T)
Y=CY+R+SIN(T)

LINE (128, 96)-(X, Y)

NEXTT
COLOR 15
FOR R=90 TO 95 STEP 0.8
X=R:Y=0

FOR I=O TO 63
T=X*C-Y*S
YEXxS+YxC

x-T
IF I=O THEN PSET(CX+SC+X, CY-Y)

LINE -(CX+SC+X, CY-Y)
NEXT I:NEXT R

GO TO 210

228

Clock

10
20
30

50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320

REM CLOCK
SCREEN 1:CLS
COLOR 10, 1,7
LOCATE 3, 5:PRINT “WHAT TIME IS IT NOW?"
LOCATE 6, 7:PRINT “FOR EXAM. 12:30= > 12, 30”
LOCATE 10, 9:INPUT H, M

PI=3. 142:SCREEN 2, 2, 1

LINE (O, 0)-(255, 191), 14, B

CIRCLE(127, 96), 85, 14
GOSUB 270
PAINT (5, 5), 14, 14
REM MAIN

S=0 : TIME=0
S=INT (TIME/60)
IF S=60 THEN S=0 : M=M+1 : TIME=0 : GOSUB 240
IF M=60 THEN M=0 : H=H+1

IF H=13 THEN H=1

PSET (127, 96), 13
X=Pl*(1-M/30)
Y=PI*(1-(H*60+M)/360)
LINE (127, 96}{64*SIN(X}+127, 55*COS(X)+96), 15

LINE (127, 96}(45*SIN(Y}+127, 35*COS(Y)+96), 15
GOTO 140
LINE (127, 96}-(64*SIN(X}+127, 55*COS(X)+96), 1

LINE (127, 96}-(45*SIN(Y)+127, 35*COS(X)+96), 1

RETURN
FOR K=0 TO 360 STEP 30
X1=127+70*COS(PI*K/180)
Y1=96+64*SIN(PI*K/180)
PSET (X1, Y1), 7
NEXT K

RETURN

229

UFO

10
20
30

50

70
80

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

REM UFO IN THE CITY

SCREEN 2, 1 : COLOR 15, 1, 1 : CLS
DATA 18, 3c, 24, 7e, db, 7e, 24, OO

S$=" “: FOR I=1 TO 8 : READ A$:A=VAL (“&H"+A$):
S$=S$+CHRS(A):NEXT |

SPRITE$(1)=S$
FOR I=1 TO 100
PSET (RND(1)*255, RND(1)*191), RND(1)*15
NEXT 1

LINE (O, 120}{40, 191), 15, BF

LINE (48, 152104, 191), 7, BF

FOR X=8 TO 24 STEP 16
FOR Y=128 TO 176 STEP 16
LINE (X, Y}-(X+8, Y+8), 8, BF

NEXT Y

NEXT X

FOR X=56 TO 88 STEP 16
FOR Y=160 TO 176 STEP 16
LINE (X, Y}- (X+8, Y+8), 9, BF

NEXT Y

NEXT X

CIRCLE (224, 40), 16, 10
PAINT (224, 40), 10, 10
Xx=120 : Y-88
FOR I=0 TO 500
X=X+RND(1)*10-5 : Y=Y+RND(1)*8-4
PUT SPRITE 1, (X, Y), 6, 1

FOR T=0 TO 10: NEXTT
NEXT |

COLOR 15, 4, 7 : END

230

Football game
10
20

30
40

50

60
70

80

90
100
110

120
130

140
150

160
170
180

SCREEN 2, 2:COLOR 15, 13, 13:CLS
DRAW “bm165, 70;m158, 72;m150, 50;m156, 44;m 160,
48;m182, 36;m201, 36;m219, 50;m206, 68;m189, 53"
DRAW “bm160, 56;m 184, 102;m194, 98;m213, 72;m209, 66”
DRAW “bm216, 53;m229, 69;m202, 104;m192, 112;m188,
107;m189, 104;m185, 105;m184, 102"
DRAW “bm160, 71;m168, 93;m161, 97;m157, 95;m154,
96;m157, 100;m152, 101;m157, 109;m162,
108;m163, 107;m181, 98”
DRAW “bm156, 44;m156, 50;m 160, 48;m163, 51;m182, 36
DRAW “bm213, 89;m222, 83:bm220, 81;m237, 101;m198
138;m179, 122;m189, 109:bm205, 132;m211, 137,;m237,
101"
DRAW “bm179, 122;m165, 137;m207, 180;m216, 169;m 194,
141;m197, 138;bm218, 169;m220, 167;m220, 167;m226,
170;m213, 191;m200, 191;5m195, 166;m206, 155”
CIRCLE (203, 165), 6, … 7, 4,5
DRAW “bm210, 135;m197, 144;5m196, 167;m207, 156”
DRAW “bm169, 141;m128, 171;m137, 182;m181,
154bm143, 160;m153, 171;bm137, 182;m137, 183;m131,
187;m113, 165;m118, 160;bm144, 159;m154, 170"
CIRCLE (123, 165), 7, 5.5, 2.6
DRAW “bm152, 40;m168, 40;m1786, 32;m1786, 16;m144,
16;m 144, 32;m 152, 40;bm152.36;m 162, 36;bm144,
22;m 150, 24;bm162, 24;m 170, 22;bm156, 24;m 148,
32;m156, 32"
CIRCLE (162, 24), 20, 5, 2.9
DRAW “’bm180, 16;m179, 26;m175, 32;bm176, 20;m179,
24:bm155, 40;m 156, 44;bm174, 35;m176, 37”
PSET (147, 26);PSET (164, 26)
PAINT (160, 10):PAINT (210, 184):PAINT (128, 180)
CIRCLE (57, 109), 23
DRAW “bm56, 96;m64, 96;m67, 102;m59, 108;m53, 101; m56,
96“":PAINT (60, 100)

231

200

210

220

230

240

250

260

DRAW “bm59, 113;m66, 117;m64, 124;m56, 125;m53,
116;m59, 113":PAINT (60, 120)
DRAW “bm40, 101;m47, 105;m47, 111;ma40, 113;m35,
107;m40, 101":PAINT (40, 108)
DRAW “bm78, 102;m73, 105;m73, 111;m78, 114":PAINT

(75, 108)
DRAW “bm41, 95;m40, 101;bm50, 88;m56, 96;5m64,
96;m69, 90;bm48, 104;m53, 101;bm66, 102;m73, 105;bm48,
112;m53, 117;bm59, 107;m60, 112;bm66, 117;m72, 128"
DRAW “bm40, 113;m39, 122;bm56, 125;m51, 129;bm64,
125;m67, 128"
DRAW “bm73, 133;m99, 157;bm74, 131;m99, 153;bm77,
129;m98, 146;bm80, 128,m91, 138”
GOTO 260

232

Car race
10
20
30

40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210

220
230
240
250
260
270
280
290
300
310
320
330
340

SCREEN 0, 3:WIDTH 30:CLS:DIM E(22)
FORJ=0 TO 2

S$=" ":FOR I=0 TO 32 : READ A$:A= VAL ("&H"+A$)

:S$=S$+CHRS(A) : NEXT I

SPRITES(J)=S$:NEXT J
FOR I= TO 22:E(=10:NEXT I

C=110:E=10
FOR T=0TO 100
FOR I=0 TO 21:E(22-|)=E(21-I):NEXT |

E=E+INT (RND(2)*3}-1
IF E<1 THEN E=1

IF E<19 THEN E=19
E(O)=E

FOR I=0 TO 22
K$=INKEYS:IF K$=" THEN 170

IF ASC (A$)=28 THEN C=C+1

IF ASC (A$)=29 THEN C=C-1
LOCATE 0, I:PRINT SPC (E(l):
PRINT “T' ; SPC (8); T"; SPC (23-E(1)
PUT SPRITE 1, (C, 128), 6, 1

PUT SPRITE 2, (C, 128), 1, 2
FOR B=0 TO 3:IF C <(E(16+B}+1)*8-1 ORC >
(E (16+B}+7)*8-2 THEN 250:NEXT B

NEXT I:NEXTT
PLAY “c”, “le”, "g:SCREEN 1, 3

LOCATE 10, 10:PRINT “GOOD !!!":END
PLAY “o”, “c+”, "d:SCREEN 1,3
LOCATE 10, 1O:PRINT "NO GOOD !!!”:END
DATA 07, Of, Of, Of, Of, Of, 08, 07
DATA Ob, Ob, Ob, Ob, Ob, 08, Of, Of

DATA e0, f0, f0, f0, f0, fO, 10, 10
DATA dO, dO, dO,dO, dO, 10, f0, fO

DATA 00, Ob, 00, 10, 10, 10, 00, 00
DATA 00, 00, 00, 10, 10, 10, 00, 00
DATA 00, 00, 00, 08, 08, 08, 00, 00
DATA 00, 00, 00,08, 08, 08, 00, 00

233

APPENDICES

Appendix A

CONTROL CODE TABLE

Epen|GEE FUNCTION KEY

0 00
1 01 Header byte for Graphic character
2 02 To movethe cursorto the first character of previous word

3 03 To terminate waiting for input
4 04
5 05 To delete behind the current cursor position
6 06 To move the cursorto the first character of next word
7 07 To beep

8 08 To delete the character to theleft of the cursor
9 09 To move the cursorto the next horizontal tab position

10 OA Line feed

11 oB To move the cursorto the home position
12 oc To move the cursorto the home position and clear the screen
13 oD Carriage return

14 OE To move the cursor to lastof the current line
15 OF

16 10

17 11

18 12|To toggle the insert mode

19 13

20 14

21 15 To delete the current line from the screen
22 16

23 17

24 18

25 19

26 1A

27 1B

28 1C To move the cursorto the right
29 1D To movethe cursorto the left
30 1E To move the cursor to the up
31 1F To move the cursorto the down

127 7F To delete the character of current cursor position

237

Appendix B

CHARACTER CODE TABLE

CODE |cCODE|Chara| CODE|CODE |Chara| CODE|CODE |Chara| CODE|CODE [chara
(Decimal)| (Hexa)| cter |(Decimal}| (Hexa)| cter |(Decimal)| (Hexa)| cter |(Decimal)| (Hexa]| cter

0 00 32 20 64 vo |@e 96 so|x

1 01 32 2|1 65 41|A 97 61|a

2 0 @ 34 „|= 66 42|B 98 62|b

3 3 9 35 23] #4 67 433|Cc 99 63|c

4 04|4 36 24 s 68 44 D 100 64 d

5 05 & 37 2|% 69 45|E 101 65|e
6 6/4 38 5/|& 70 46 |F 102 GO
7 07|[m) 39 27|+ n 47 |G 103 67|g
8 os B 40 28|(72 48|H 104 68|h

9 os
|C

a1 29 |) 73 49|1 105 69 i

10 OA 42 Ve 74 aa |J 106|ea|ji

1 B |J 43 8 |+ 75 48 |K 107|68|k

12 oc 2 44 zc : 76 4ac L 108 6c l

13 on |} 45 2D|— 77 4D|M 109 6D|m

14 OE|A 46 2E 5 78 4E|ON 110 6E n

15 oF|& 47 2|/ 79 4aF|Oo 111 er|o

16 10|HI 48 0 |oo 80 so |P 112 70|p

17 u |E 49 21|171 81 s1 |Q 113 nld
18 2 ID 50 32|2 82 52|R 114 72|or

19 13 |H 51 33|3 83 53|s 115 3 ls

20 14|IB 52 34|4 84 54 |T 116 76 |t

21 15 53 3|5 85 55|U 117 75|u

22 16|[Ĳ 54 36|6 86 se|Vv 118 76|v

23 7IE 55 s7| f 87 57|w|119 77|w
24 8 IE 56 388 88 58|x 120 78|x

25 1 |B] 87 3|9 89 sa |Y 121 1|y

26 4 |T 58 34 90 sa|z 122 7a|z

27 Bm 59 38 91 se | 123|78|4

2 ||X|6|zc 82 [sc|\|124|zc ji

29 0 |Z] 61 30|= 93 sD|1 125|Do|+

30 EIN 62 3E >= 94 SE|A 126 TE|—
31 FIA 63 3F ? 95 SF|— 127 7F

238

CODE|CODE |Chara| CODE|CODE |Chara|CODE|CODE [Chara|CODE|CODE |Chara
Decimal)| (Hexa)|cter |{Decimal)}| (Hexa)| cter |{Decimal)| (Hexa)|cter |{Decimal)| (Hexa) | cter

128|0|© 160|AO|á 192|co||224|ro|a
129 s1|u 161 Al|7 193|ci [Eg|225 Ei [6

130 82|é 162 A2|ó 194 cc 226 Ee IT

131 83|á 163 A3|ú 195 cz |E] 227 Elz
132 84|á 184|A4|â 196|ca [EW]|228|e4|x
133|85|à 1668|45|A|197|cs [| 229|E5 |=
134|86|á|166|a6|a|198|ce | 220|E66 |L

135|87|€ Lr EN 199|7 [B|231 e7 |T

16|88|e|168|aa|à 200|ca [| 222|ed137 89|é 169 A9|rr 201 co IO 233 E9|9

135|8A|è 10|Aa|7|202|ca [| 234|ma |Q

139|88|ï 171 A8|4%|203|c8 235|E8|3

140|8c|7 172|ac|X%|204|cc 238|Ec|©
141 sn|i 173|AD|i 205 co IM|237 Ec|#
142|8e|A|174|ae |<|206|ce IQ]|238|Eej €
143 8e|á 175 AF|> 207 CF |] 239 EF IN

144 so|£ 176 BO | 208 vo 4 240 ro|=
145|m1|e=|177|Bi|a 209|Di [WE]|241 F1|+
16|92 |E) 178 [82 |T|20 02 | 22 2|z
147|93|ô 179|B3|î 211 3 IE|243 mz |s
18|ma|á|180|Ba [6|2072

| na [| 244|rar
149 95|ò 181 85|© 213 | 5 | 245 FS||
150 96]|û 182 B6|Ù 214 vo 246 F6 |151 97|ù 183 87|ü 215 07 247 F7 |=
152 8 |y 184 B8|TT 216 o8 [SE]|248 rs IQ

153|99|© 185|B9|ij 217|D9|#4 249|Fo|B
154 9A|U 186 BA 2% 218 DA © 250 FA ||-

15|ms [cc|1897|88) —|218 Dem zis [re [Vo

18|sc|£ 188|BC ©|220|Dc | 252 rcn
157|Dx 189|BE %|221 oo N]|253|mo 2

18|8e [Pt|190|Bor|222|De B|254|Fe |H]

159|SF|f 191 BF|8 223|DF|BM|255 FF

239

Appendix C

SLOT ARRANGEMENT

OOOOH

PAGE O

4000 H

PAGE 1

8000 H

PAGE 2

CO00H

PAGE 3

FFFF H

Slot 0 Slot 1 Slot 2 Slot 3

BASIC-ROM
(32KB)

RAM
(64KB)

240

Appendix D

Memory MAP
0000 H

8000 H

USER

AREA

F380H

FFFFH

MSX -BASIC ROM

—_—

TEXT AREA

VARIABLE AREA

ARRAY VARIABLE AREAme|FREE AREA

STACK AREA

STRING AREA

FILE CONTROL BLOCK

WORK AREA

241

© To store the BASIC program with line
number.

© To store the numeric variable. In

case of string variable, the string
description of that string variable is
saved.

© To store the numeric array variable.
In case of string variable, the string
description of that string variable is
saved.

 ——® Not used area by programmer|r® Stack area for return address. It is
used for GOSUB or FOR-NEXT state-
ment etc.

To store the string of string variable

we or string array variable.
© Used for Input or Output offile

[7® The area used for system

Appendix E

I/O MAP
69 1/0

ADDRESS|R/W |DESCRIPTION REMARK

98H W |Towrite data to V-RAM [equivalent
R To read date from V-RAM |with 9129

99H W To write Command or Set
Address

8OH R To read Status
* RS-232C AOH W [To latch Address equivalent

AlH W [To wirte data to PSG with 8910
A2H R To read data from PSG

9OH A8H W |(Towirtedatato port A equivalent
PRINTER R |Toreaddatafrom port A with 8255A

98H A9H W [To write data to port B

VDP R To read data from port B
AOH AAH W [To write data to port C

PSG R To read data from port C

ASH
Ee

ABH W|To set mode

BOH 9OH W [To output strobe signal (bO)latch signal
R To read status signal (b1) |High when Busy”

91H W|To output the print-out latchsignal
data

DOH
* FDC

D8H

FFH
* meansoptional device

242

Appendix F

PINOUTS FOR INPUT/OUTPUT DEVICES

Joystick
PIN SIGNAL

FORWARD
BACKWARD PIN CONNECTION
LEFT

RIGHT
+5V
TRIGGER 1

TRIGGER 2
OUTPUT

vo

NN

o/ln|sjw|in/-—

GND

Data Recorder Interface
PIN SIGNDL

GND

GND

GND PIN CONNECTION

CASSETTE OUT

CASSETTE IN

REMOTE +

REMOTE -

olsviola/sjwin|-=

GND

243

Printer Interface
PIN Type Description

1 OUTPUT PSTB

2 OUTPUT PDBO

3 OUTPUT PDB 1

4 OUTPUT PDB 2

5 OUTPUT PDB 3

6 OUTPUT PDB 4
7 OUTPUT _ PDBS
8 OUTPUT PDB 6

9 OUTPUT PDB7 |
10 = |]
11 INPUT BUSY

12 =
ë

13 = |
14 == GND

PIN CONNECTION

244

Cartridge Bus
PIN No. NAME V/O||PIN No. NAME Vo

1 csi o 2 Ts2 o
3

|

T572 io || 4 SLTSL ee
5 Reserved *1 — | 6 RFSH o
1 WATT *2 l 8 INT *2

|

l

9 Mi o 10 BUSDIR 1
11 IOR” o 12 MERG o
13 WR o | 14 RD o
15 RESET o |I 16 Reserved *1 —
17 A9 o 18 A15 o
19

|
AM o | 20 A10 [ee]

21
| A7 o || 22 AG o

29 A12 o 24 A8 o
25 A14 o 26 A13 o
27 A1 o 28 AO o
29 A3 o 30 A2 o
31 A5 0 32 A4 jo
33 D1

|

Vo||34 DO vo
35 D3

| Vo||36 D2 Vo
37 D5 Vo|38 D4 Vo
39 | D7 Vo|40 D6 Vo
41 GND = 42 CLOCK o
43 GND — 44 sw1 —_

45 +6V
|

—
||

46 sw2
47 +5V | — || 48 +12V —-

49 | _SUNDIN LL || 50 -12V |L
49 1

*1:Not allowed to use
*2:Open Collector

245

PIN No.|NAME Description
1 cs1 Select signal for address 400OH-7FFF H of ROM
2 CS2 Select signal for address 8BOOOH-BFFF H of ROM
3 cs12 Select signal for address 400OH-BFFF H of ROM
4 SLTSL Select signal for slot

5 Reserved|Reserved bus for future use
6 RFSH Refresh cycle for dynamic RAM

7 WAIT Wait request to CPU

8 INT Interrupt request to CPU
9 M1 Instruction fetch cycle of CPU

10 BUSDIR Control signal for direction of external data bus buffer

11 IORQ I/O request signal of CPU
12 MERQ Memory request signal of CPU
13 WR Write signal of CPU

14 RD Read signal of CPU
15 RESET Reset for system
16 Reserved|Reserved bus for future use
17-32|AO-A15|Address bus
33-40|DO-D7 Data bus
41 GND Ground
42 Clock Clock signal for CPU

43 GND Ground
44,46|SW1, SW2| Switch for protection
45,47|+5V Power line. +5V

48 +12V Power line. +12V

49 SUNDIN Input for external sound
50 -12V Power line. -12V

246

Appendix G

ERROR MESSAGES AND ERROR CODES
Bad file name : 56

An illegal form is used for the file name with LOAD, SAVE, KILL,

NAME, etc.

Bad file number : 52
A statement or command references a file with a file number that is
not OPEN oris out of the range of file numbers specified by MAXFILE
statement.

Can't continue : 17
An attempt is made to continue a program that:
1. has halted due to an error,
2. has been modified during a break in execution, or
3. does not exist.

Device I/O error : 19
An I/O error occurred on a cassette, printer, or CRT operation. lt is a
fatal error;i.e., BASIC cannot recover from the error.

Direct statement in file : 57
A direct statement is encountered while LOADing an ASCII format file.
The LOADis terminated.

Division by zero : 11

A division by zero is encountered in an expression, or the operation of
involution results in zero being raised to a negative power.

FIELD Overflow : 50
A FIELD statement is attempting allocate more bytes than were speci-
fied for the record length of a random file in the OPEN statement. Or,
the end of the FIELD buffer is encountered while doing sequential I/O
(PRINT#, INPUT#) to a random file.

°

File already open : 54
A sequential output mode OPEN is issued for a file that is already
open; or a KILLis given for a file that is open.

File not found : 53
A LOAD, KILL, or OPEN statement referencesafile that does not exist
in the memory.

247

File not OPEN : 59
Thefile specified in a PRINT#, INPUT#, etc hasn't been OPENed.

Illegal direct : 12
A statement that is illegal in direct mode is entered as a direct mode
command.

Illegal function call: 5
A parameter that is out of the range is passed to a math or string func-
tion. An FC error may also occur as the result of:

1. a negative or unreasonably large subscript.
2. a negative or zero argument with LOG.
3. a negative argument to SOR.
4. an improper argument to MID$, LEFT$, RIGHT $, INP, OUT, PEEK,

POKE, TAB, SPC, STRING $, SPACE $, INSTP $ or ON -GOTO.

Input past end : 55
An INPUT statement is executed after all the data in thefile has been
INPUT, or for null (empty)file. To avoid this error, use the EOF function
to detect the end offile.

Internal error : 51
An internal malfunction has occurred. Report to Microsoft the condi-
tions under which the message appeared.

Line buffer overflow : 25
An enteredline has too many characters.

Missing operand : 24
An expression contained an operator with no operand following it.

NEXT without FOR : 1

A variable in a NEXT statement does not correspond to any previously
executed, unmatched FOR statement variable.

No RESUME : 21
An error trapping routine is entered but contains no RESUME state-
ment.

Out of DATA : 4
A READ statement is executed when there are no DATA statement
with unread data remaining in the program.

248

Out of memory : 7
A program is too large, has too manyfiles, has too many FOR loops or
GOSUBs, too many variables, or expressions that are too complicated.

Outof string space : 14
String variables have caused BASIC to exceed the amount of free
memory remaining. BASIC will allocate string space dynamically, until
it runs out of memory.

Overflow : 6
The result of a calculation is too large to be represented in BASIC's
number format.

Redimensioned array : 10
Two DIM statements are given for the same array, or DIM statement is
given for an array after the default dimension of 10 has been estab-
lished for that array.

RESUME without error : 22
A RESUME statement is encountered before an error trapping routine
is entered.

RETURN without GOSUB:3
A RETURN statement is encountered for which there is no previous,
unmatched GOSUB statement.

Sequential I/O only : 58
A statement to random accessis issued for a sequential file.

String formula too complex : 16
A string expression is too long or too complex. The expression should
be broken into smaller expressions.

String too long : 15
An attempt is made to create a string more than 255 character long.

Subscript out of range : 9
An array element is referenced either with a subscript that is outside
the dimensions of the array, or with the wrong number of subscripts

249

Syntax error : 2
A line is encountered that contains some incorrect sequence of charac-
ters (such as unmatched parenthesis, misspelled command or state-
ment, incorrect punctuation, etc.)

Type mismatch : 3
A string variable nameis assigned a numeric value or vice versa; a
function that expects a numeric argument is given a string argument
orvice versa.

Undefined line number : 8
A line reference in a GOTO, GOSUB, IF -THEN —ELSE is to a nonexist-
ent line.

Undefined user function : 18
FN function is called before defining it with the DEF FN statement.

Unprintable error : 23
An error message is not available for the error condition which exists.
Thisis usually caused by an ERROR with an undefined error code.

Unprintable errors : 26-49
These codes have no definitions. Should be reserved for future expan-
sion in BASIC.

Unprintable error : 60-255
These codes have no definitions. Users may place their own error code
definitions at the high end of this range.

Verify error : 20
The current program is different from the program saved on the
cassette.

250

Appendix H

MSX-BASIC RESERVED WORDS
BASIC statements and function names are reserved. That is, the key words
cannot be used in variable names. This appendix lists all of the MSX-BASIC
language words that are reserved. If you attempt to use any of the words listed
below as the nameof the variable, an erroris indicated by the computer.

ABS
AND
ASC
ATN
AYTR$
AUTO
BEEP
BIN$
BLOAD
BSAVE
CALL
CDBL
CHR$
CINT
CIRCLE
CLEAR
CLOAD
CLOSE
CLS
CMD
COLOR
CONT
COPY
COS
CSAVE
CSNG
CSRLIN
cvD
cv
cvs
DATA
DEF
DEFDBL

DEFINT
DEFSNG
DEFSTR
DELETE
DIM
DRAW
DSKF
DSKI$
DSKO$
ELSE
END
EOF
EOV
ERASE
ERL
ERR
ERROR
EXP
FIELD
FILES
FIX

FN
FOR
FPOS
FRE
GET
GOSUB
GOTO
HEX$
IF

IMP
INKEY$

INP
INPUT
INSTR
INT

IPL
KEY
KILL
LEFT$
LEN
LET
LFILES
LINE
LUST

LLIST
LOAD
LOC
LOCATE
LOF
LOG
LPOS
MAX
MERGE
MID$
MKI$
MKS$
MOD
MOTOR
NAME
NEW
NEXT
NOT
ocT$

251

OPEN
OR
OUT
OFF
ON
PAD
PAINT
PDL
PEEK
PLAY
POINT
POKE
POS
PRESET
PRINT
PSET
PUT
READ
REM
RENUM
RESTORE
RESUME
RETURN
RIGHTS
RND
RSET
RUN
SAVE
SCREEN
SET
SGN

SIN
SOUND

SPACE$
SOR
SPC
SPRITE
STEP
STICK

STOP
STRIG
STR$
STRING$
SWAP
TAB
TAN
THEN

252

TIME

TO
TROFF
TRON
USING
USR
VAL

VARPTP

VDP
VPEEK
VPOKE
WAIT
WIDTH
XOR

Appendix |

MATHEMATICAL FUNCTIONS
Derived Functions
Functions that are not available in MSX-BASIC can be derived by using the
following formulae:

Function MSX-BASIC Equivalent
SECANT = 1/COS(X)
COSECANT = 1/SIN(X)
COTANGENT = 1/TAN(X)
INVERSE SINE = ATN (X/SOR(-X+X +1)
INVERSE COSINE = —ATN (X/SOR(-X+X + 1)) + 1.5708
INVERSE SECANT = ANT (X/SOR (X+X-1))

+ SGN (SGN(X}-1)+1.5708
INVERSE COSECANT = ATN (X/SOR (X*X-1))

+ (SGN(X}-1)+1.5708
INVERSE COTANGENT =ATN(X)+1.5708
HYPERBOLIC SINE = (EXP(X)-EXP (-X)/2
HYPERBOLIC COSINE =(EXP(X)-EXP (-X)/2
HYPERBOLIC TANGENT =(EXP(-X)/EXP(X)+EXP(-X))*2+1
HYPERBOLIC SECANT = 2/(EXP(X)HEXP(X))
HYPERBOLIC COSECANT = 2/(EXP(X)-EXP(-X))
HYPERBOLIC

COTANGENT = EXP(-X)/(EXP(X)-EXP(-X))*2+1
INVERSE HYPERBOLIC

SINE = LOG(X+SOR(XxX+1))
INVERSE HYPERBOLIC

COSINE = LOG(XHSOR(XxX-1))
INVERSE HYPERBOLIC

TANGENT = LOG((1+X)/(1-X))/2
INVERSE HYPERBOLIC

SECANT = LOG ((SOR(-XxX+1}+1)/X)
INVERSE HYPERBOLIC

COSECANT = LOG ((SGN(X)x*SOR (XxX+1}+1)/X)
INVERSE HYPERBOLIC

COTANGENT = LOG ((X+1)/(X-1))/2

253

Appendix J
TROUBLE SHOOTING CHART

Symptom Cause Remedy
Power switch not Make sure power switch
turned on is in “ON” position

No Power Power cable not Check power socket for loose
pluged in or disconnected power cable

Bad fuse in computer Take system to authorized
dealer for replacement of
fuse

No Picture Video cable not plugged in|Check TV output cable
connection

No Sound TV Volume too low Adjust volume of TV

No Color Poorly tuned TV Retune TV

Bad color adjustment on TV|Adjust Color control on TV

Random Pattern on|Cartridge not properly Reinsert cartridge after
TV with cartridge inserted turning off power
in place

Sound with excess|TV volume up high Adjust Volume of TV

background noise

254

